
New Developments in EPOS Tools for Configuring and Generating Embedded
Systems

Rafael L. Cancian, Marcelo R. Stemmer
Department of Automation and Systems (DAS)
Federal University of Santa Catarina (UFSC)

{cancian,marcelo}@das.ufsc.br

Antônio Augusto M. Fröhlich
Laboratory for Hardware and Software Integration (LISHA)

Computer Science Department (INE)
Federal University of Santa Catarina (UFSC)

guto@lisha.ufsc.br

Abstract

Embedded systems usually run dedicated applications
in highly restricted environments. This paper describes
our approach to configure and generate embedded sys-
tems and a tool to assist this process that is being used
with EPOS (Embedded and Parallel Operating System),
an OS developed using AOSD. This tool receives a hight
level specification of the application and builds the nec-
essary computational support for it. This paper describes
some improvements to the tool that are enabling this pro-
cess to be done automatically. Co-design, design space
exploration and partitioning techniques were modeled as
independent components, which allow to modify the im-
plementation technique used in each step of this process
and to use it to compose a new tool without changing the
whole developing chain. Our main contribution is in the
development of highly portable and application-oriented
embedded systems using AOSD in a semi-automatized
process guided by our tool.

1. Introduction

Embedded systems can be implemented over some
different kind of hardware support, including microcon-
trollers and programmable logic devices (PLD). Micro-
controllers have fixed hardware and allow software pro-
gramming. They exist in several families and types and
it’s easy to find a type that internally aggregates the nec-
essary hardware components. Even if this doesn’t happen,
external hardware components can be interconnected to
the microcontroller using a printed circuit board to build
the hardware platform. PLD are mainly represented by
FPGAs. They have programmable hardware, what makes
possible to include the necessary hardware components

that matches exactly application requirements. The exis-
tence of tools for translating programming languages into
hardware description languages (HLD), the possibility of
synthesizing microcontrollers or processors as a hardware
component (soft core) into a FPGA, and the advances in
synthesis CAD tools, have allowed all computational sup-
port (sw and hw) to be placed into a single PLD, creating
a System-on-a-Chip (SoC).

The advances in FPGA tecnology have produced a
strong tendency in using that devices as hardware plat-
form for embedded systems because they actually show
some advantages, including: (i) facilities in integrating
hardware components into a single chip, (ii) flexibility and
CAD tools to support hardware development, (iii) possi-
bility to co-design hardware and software, and (iv) parti-
tioning system components into hardware or software do-
main. Microcontrollers have evolved too and continue to
be very used. However, during the last decade and a half,
research efforts were focused into the development of em-
bedded systems as SoCs, MpSoCs ou Network of SoCs
built over FPGAs.

This paper is organized as follow: Section 2 briefly dis-
cuss the methodologies for co-design and the AOSD, our
approach to design embedded systems. Section 3 presents
our tool used to assist the process of configuring and gen-
erating embedded systems. Section 4 finalizes with some
conclusions and a roadmap for future work.

2 Fundamentals

2.1 Hardware/Software Co-design
Methods for hardware/software co-design were created

as a solution for several problems related to the integration
of software and hardware components that used to hap-
pen even when individual components work correctly fol-
lowing their logical specifications. These methods include1-4244-0826-1/07/$20.00 © 2007 IEEE 776

tests and integration in every single step of the design, al-
low both (hw and sw) teams to work in parallel, avoid
error propagation to the next step, and help to determine
a combination of possible implementations for the com-
ponents that compose the system, eg, hardware/software
partitioning. In general, they differ in relation to (i) the
abstraction level and input notation, (ii) the system model
used, and (iii) the partitioning technique used.

Using a single description language to specify both
hardware and software brings up several advantages to
embedded system design. Much effort have been directed
to the identification of basic blocks that could be mapped
to any implementation domain (hw or sw). Despite all re-
search and optimism, [5] from Xilix Research Labs, says
that there’s no actual compiler in position to translate al-
gorithms in programming language into efficient hardware
implementations for different architectures.While actual
compilers do not allow efficient hardware synthesis from
high level software programming languages and tools do
not perform all design steps in an integrated and efficient
way, the general architecture model approach will con-
tinue to be used for embedded systems design.

2.2 Hardware/Software Partitioning

Hardware/software partitioning is considered one of
the most important steps in hardware/software co-design,
because in this step several design alternatives are ex-
plored to find an optimal (or sub-optimal) solution that
matches some design constraints (usually related to sil-
icon area and latency). The partitioning is basically a
combinatorial optimization problem. Interactive and auto-
matic approaches have been proposed. The interactive ap-
proach requires the designer intervention and is very used
because the performance estimation of the design alter-
natives depend on several aspects and is a complex prob-
lem. The automatic approach goals to minimize the cost-
function used and its performance depends on the tech-
niques used and on the cost-function representativity and
accuracy. Techniques like Integer Linear Programming
(ILP) [6], Simulated Annealing (SA) [1], Tabu Search [2],
Genetic Computing [10] [7], Group Migration, and Hier-
archical Clustering have been used.

The main problems with actual techniques seem to
be related to cost models, and performance estimations,
and to the representation of cost-functions to be mini-
mized. Since system models are being expressed using
even higher abstraction level, it has became too hard and
even impossible to extract accurate performance estima-
tions. Using less abstract models (eg RTL) is possible to
get better estivatives. However, the process to produce
and to simulate such models usually takes a prohibitive
amount of time. As a consequence, the cost-functions usu-
ally doesn’t represent an accurate realization of the sys-
tem.

2.3 Design Space Exploration
The design space exploration aims at generating mod-

els for each project alternative and to obtain values to esti-
mate their performance and to create the cost-function to
be minimized by the partitioning algorithm. The choice of
which project alternative will be evaluated to extract per-
formance metrics is systematized to better explore the de-
sign space, and that’s usually done by a design experiment
approach. The system model, at the adequate abstraction
level, is a compromise between accuracy and processing
time. Higher abstraction level models are faster, but pro-
duce less accurated metrics or simply do not allow the ex-
traction of some metrics (eg energy consumption).

Despite all advances and researches on the design of
embedded system over PLD, using microcontrollers may
be simply the best option in several cases. And this project
alternative must be taken into account by tools that assist
embedded system’s designers. In this sense, the design
space exploration should begin answering a more general
question than what is the silicon area consumed or the la-
tency of the future synthesized circuit: Would be better
to implement that system over microcontrollers or PLD?
This kind of design/architectural space exploration should
precede traditional exploring and partitioning approaches,
and should be based on more general features of the sys-
tem, as the system final cost, for example.

2.4 AOSD and EPOS
The Application-Oriented Systems Design method

(AOSD) proposes strategies to define components that
represent significant entities in different domains. AOSD
allows the modeling of independent abstractions and orga-
nizes them as family members, as defined in the Family-
Based Design (FBD) [8]. To reduce environment depen-
dences and to increase abstractions re-usability, AOSD ag-
gregates to the decomposition process the main concern
of Aspect-Oriented Programming (AOP): aspects separa-
tion. With the use of this concern, it is possible to iden-
tify scenario variations and non-functional properties and
to model them as scenario aspects that crosscut the entire
system. The integrated utilization of these and other ad-
vanced software engineering techniques allows the devel-
opment of efficient methodologies for Embedded Systems
Design, both in basic software and in hardware domains.

One of the first practical strategies using AOSD is
the one proposed by [3], the EPOS (Embedded Paral-
lel Operating System). EPOS is a framework conceived
through AOSD that combines concerns of FBD, OAP, Ob-
ject Oriented Design (OOD) and Static Meta Program-
ming (SMP) to guide the development of scenario inde-
pendent component families that, by applying scenario
adapters, can be used in different environments and pro-
vide architecture transparency [4]. Besides operating sys-
tem components, it has been extended to deal with hard-
ware [9], allowing for the design of hybrid components
whose software/hardware implementations are suitable.
This approach has so far enabled the development of run-

2

777

time support systems with architectures that are defined
according to the particular needs of applications. Indeed,
with all these features it seems a promising approach to
help solving the problems that currently limit efficiency
in embedded system development.

3. Developments in EPOS Tool

In this paper we present the general basic principles of
the approach is being used in our research group to as-
sist the process of configuring and generating embedded
systems and also of the tool and techniques that are be-
ing included into the framework used in this process. A
prototype implementation of this tool is in use and new
advances are being included to help solving the problems
mentioned in the last section. The development of such
new advances is being guided by some desirable features
identified by our research group while designing and de-
veloping some real embedded systems. According to our
expertise, a tool to assist the design of embedded systems
should include the following four features:

(1) To have a well designed and waste repository of
portable and reusable software and hardware components.
Components must be independent of execution scenario
and need to be completely defined with dependences and
composition rules that allow their automatic adaptation
and composition, and features that allow their selection
and partitioning. This feature is already implemented
in our tool that can identify, select, adapt, and compose
components. Current repository supports independent
software and hardware components. New developments
are defining and implementing an architecture for hybrid
hardware/software components, that are software engi-
neering artifacts that freely combine hardware and soft-
ware elements.

(2) To support several co-design methods, including
design space exploration, hardware/software partitioning,
and components specified in different languages (C++,
SystemC, VHDL, etc) and abstraction levels. Our tool
was modeled to represent the design steps as components
themselves. That means the implementation of a partic-
ular design step can be switched for another one without
compromising the functionality of other design steps or
tool modules. The support for C++ and VHDL is already
implemented. Current work aims at providing support for
SystemC components and for automated design space ex-
ploration and hw/sw partitioning techniques.

(3) To allow the designer to choose an interactive or
automatic process on each design step. An interactive
process gives the developer some choices and waits for
his selection, thus better capturing his knowledge. An
automatic process is based on previous designer choices
or techniques that don’t need human interference. Ac-
tually our tool accepts only the interactive process in all
steps, except for the first one (the analysis of source-code).
Current works are implementing automatic techniques for
each step.

(4) To consider both microcontrollers and FPGAs as
possible alternatives for target-platforms. Our approach
uses Feature Based Modeling (FBM) instead of traditional
costs (latency, silicon area, memory usage, etc). This
allow architectural exploration (several microcontrollers
and FPGAs based platforms can be evaluated as possible
target platforms) and the use of more high level features.
Other difference is that a feature is not characterized by a
single value, but for a tuple allowing to indicate the knowl-
edge or the incertitude about that feature.

Our approach relies on a static configuration mecha-
nism that allows the generation of optimized versions of
the operating system and hardware for each of the appli-
cations that are going to use it. This approach was imple-
mented using EPOS framework and consists on a reposi-
tory of hardware and software components, files to repre-
sent dependences, composition rules, scenario adapters,
traits and features, and a tool that use all these stuff
to configure and generate application-oriented embedded
systems. The tool was divided into four major mod-
ules: Analizer, Partitioner, Configurator,
and Generator.

The Analyser is responsible for identifying what
features are required from the application, and elabo-
rates a requirement specification that includes methods,
types, and constants used by the application. This module
seeks the input for references to the components’ inter-
faces (methods that compose the OS API), what could be
done based on high level input specifications of the sys-
tem, such as UML or source-code. The actual implemen-
tation of the Analyzer assumes the input is the applica-
tion source-code. It applies a technique that involves the
compilation of the application’s source code, a look at the
resulting object files, and the identification of unresolved
symbols (the EPOS API). It’s useful to remember the tool
modules were designed as independent components. It
means that other implementation that reads a XMI file de-
scribing the application (with UML diagrams) could also
be used to search for references to the components’ inter-
faces and to elaborate a requirement specification, with no
modifications to the tool chain. A component dependency
tree is produced and used to feed the Partitioner.
Multiple project alternatives are coded as alternative com-
ponents (nodes) in such structure.

The description of components must be complete
enough so that the Partitioner module will be able
to automatically identify which abstractions better satisfy
the requirements of the application without violating de-
sign requirements, generating conflicts or invalid config-
urations and compositions. A component is defined by a
family and its set of member. In addiction to that, this
enriched description can be used to perform design space
exploration. A dependency tree with no alternative com-
ponents corresponds to a unique project alternative and
features are used to map how components meet design
constraints. The combination of all possible projects, in-
cluding possible target-platforms, forms the design space

3

778

to be explored.
The description of the interfaces in a family and

its members is the main source of information for the
Configurator, but correctly assembling a component-
based system goes far beyond the verification of syntac-
tic interface conformance: non-functional and behavioral
properties must also be conveyed. For this purpose, the
component description language includes two special el-
ements: feature and dependency. These elements
can be applied to virtually any other element in the lan-
guage to specify features provided by components and de-
pendencies among components that cannot be directly de-
duced from their interfaces. Enriching the description of
components with features and dependencies can signifi-
cantly improve the correctness of the assembly process,
helping to avoid inconsistent component arrangements.

In the last module, the Generator allows the de-
signer to launch processes that invoke the operating sys-
tem’s makefiles, causing the system instance generation,
and processes that invoke synthesis tools that build the
hardware platform (if it’s a FPGA). Also, the application
may be compiled by the Generator with parameters
that consider the system that was just built for it. Our ap-
proach aims at generating real systems, not only simulated
ones. Possible implementations of this module could gen-
erate a system’s model at different abstraction levels (co-
simulation models) to provide performance metrics back
to the Partitoner in an iterative process. A limitation
of the actual implementation of the Generator is that
it only generates the final system, composed by a soft-
ware image and, depending on target-platform, also the
bitstream file to configure the FPGA, but does not simu-
late the system or obtains performance metrics. Current
developments are creating a new Generator component to
provide such functionality.

Results
This tool has helping us to produce interesting results.

Its strong points are its fast and simple operation and its
internal design that features good maintainability and ex-
tensibility. It allows the developer to focus on the applica-
tion and not on sw/hw support, thus significantly reducing
development time. Several functional embedded systems
were designed and fully prototyped using this tools. Ex-
amples include multimedia, digital tv, wireless sensor net-
work and energy-aware applications. The final system is
optimized for the target-application and is composed only
by necessary and sufficient components. As an example,
the software image for the Philosophers’ dinners problem
running on a IA32 is 42KB large, including boot, setup,
OS and application.

4. Conclusions

In this paper we dealt with some problems of develop-
ing embedded systems. We have briefly presented a tool
that assists developers in configuring and generating soft-
ware and hardware support for embedded systems taking

as base a collection of reusable components developed
according with the Application-Oriented System Design
methodology, their dependencies, composition rules and
features. The prototype effectively identifies, selects, con-
figures, adapts, and composes those components, generat-
ing real and functional embedded systems.

The techniques currently implemented do not repre-
sent a complete solution to automate the process of gen-
erating embedded systems whereas the designer still takes
some decisions.However, that’s not a limitation of the ap-
proach itself but only of the actual prototype implemen-
tation. Thus, work in progress includes the implementa-
tion of automated techniques for each module. Our main
contribution is in the development of highly portable and
application-oriented embedded systems using AOSD in a
semi-automatized process guided by our tool. Working
with higher level system features instead of components’
costs we are getting us in position to completely automate
this process and to explore the design space including the
target-platform as one dimension of it.

References

[1] J. H. D. Herrmann and R. Ernst. An approach to the adap-
tation of estimated cost parameters in the cosyma system.
In International Conference on Hardware Software Code-
sign - Proceedings of the 3rd international workshop on
Hardware/software co-design, pages 100 – 107, 1994.

[2] P. E. et al. System level hardware/software partitioning
based on simulated annealing and tabu search. In Design
Automation for Embedded Systems, 1997.

[3] A. A. Fröhlich. Application-Oriented Operating Systems.
PhD thesis, Sankt Augustin: GMD - Forschungszentrum
Informationstechnik, 2001.

[4] A. A. Fröhlich and W. Schröeder-Preikschat. Scenario
adapters: Efficiently adapting components. In Proceed-
ings of 4th World Multiconference on Systemics, Cyber-
netics and Informatics, 2000.

[5] P. Lysaght. Xilinx technical report. Technical report, Xil-
inx Research Labs, 2003.

[6] R. Niemann and P. Marwedel. An algorithm for hardware/-
software partitioning using mixed integer linear. In Pro-
ceedings of the ED&TC, 1996.

[7] G. Z. P. Mudry and G. Tempesti. Hybrid genetic algorithm
for constrained hardware-software partitioning. In 2nd In-
ternational Conference on Testbeds and Research Infras-
tructures for the Development of Networks and Communi-
ties, pages 1 – 6, March 2006.

[8] D. L. Parnas. On the design and development of pro- gram
families. In IEEE Transactions on Software Engineering,
pages 1–9, 1976.

[9] F. V. Polpeta and A. A. Fröhlich. Hardware mediators:
a portability artifact for component-based systems. In
Proceedings of International Conference on Embedded
and Ubiquitous Computing, volume 3207, pages 271–280,
2004.

[10] S. R. V. Srinivasan and R. Vemuri. Hardware software
partitioning with integrated hardware design space explo-
ration. In Proceedings of Design, Automation and Test in
Europe, pages 28 – 35, February 1998.

4

779

	Main
	Welcome Messages
	Committees
	Table of Contents
	Industry Day
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Technical Program
	Author Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

