
Real-Time Embedded Systems Co-design
Rafael L. Cancian1 and Marcelo R. Stemmer1, Antônio. A Fröhlich2

1Federal University of Santa Catarina
Department of Automation and System Engineering (DAS)

Laboratory for Control and Microinformatics (LCMI)
P.O. Box 476 – 88040-900 – Florianólis - SC - Brasil

{cancian,marcelo}@das.ufsc.br

2Federal University of Santa Catarina
Computer Science Department (INE)

Laboratory for Software and Hardware Integration (LISHA)
guto@lisha.ufsc.br

Abstract. This paper summarizes some techniques used in a project that goals
to analyze Real-Time Systems features in a way that allows to model and to
implement software and hardware components that will compose a framework
repository to the automatic generation of Systems-on-a-Chip. Tools associated
to that framework will allow co-design and software/hardware partitioning of
such real-time features. The contribution of such project is to produce an adapt-
able multiplatform computational system that fulfills the real-time requirements
of a particular application.

1. Introduction
Programmable Logic Devices (PLD) have been used even often as hardware platforms for
Embedded Systems (ES) and the potentiality of using configurable hardware has been re-
cently explored to provide some kind of hardware support for Real-Time Systems (RTS).
The task scheduler is considered the heart of an RTS and most of hardware support devel-
oped threads only about scheduling, although several other special features are necessary
to compose a RTS. Moreover they use to be a basic support, normally restricted to queues
and time management in hardware. This support may be significant for the simpler algo-
rithms, just like Rate Monotonic (RM) and Earliest Deadline First (EDF) but is certainly
insufficient for more complex algorithms and for other real-time features.

This project goals to decompose and analyze the Real-Time domain (not system)
using state-of-art software engineering techniques and then to incorporate these features
in a framework that allows automatic generation of application-oriented software (run-
time support) and hardware (when the platform is configurable). These real-time features
must be implemented in a way that allows a partitioning tool to automatically map them
into software or hardware components. Knowing that the differences over hardware plat-
forms for embedded systems are really considerable, it’s necessary that such framework
to provide architectural transparency and to generate systems in position to run over fixed
hardware platforms (microcontrollers from 8 to 64 bits and beyond) and over configurable
hardware platform, without having to rewrite application or operating system code. By
doing it, this project may represent significant improvement to modeling, software en-
gineering and co-design for real-time systems, specially for those applied to embedded
systems.



This paper is organized as follow: section 2 mention some related work; in section
3 we briefly describe the actual and future development of this project and, in section 4,
some considerations are given.

2. Related Work

Several hardware/software co-design or simple hardware support for RTS have been
recently proposed. Hardware support for task scheduling was proposed, among
others, by [Mooney and Micheli 2000], who implemented a cyclic scheduler, and
by [P. Kuacharoen and Mooney 2003], who implemented priority, RM and EDF sched-
ulers. Beyond the scheduling support [Kohout and Jacob 2003] developed hardware sup-
port for time and event management, despite supporting only fixed priority schedulers.
Some other kind of support were also proposed and implemented, such as memory man-
agement [Shalan and Mooney 2000] and resources access protocols [Akgul 2003].

From the software point of view, several Real-Time Operating Systems (RTOS)
for Embedded Systems (ES) are available. However, just a small part of them uses co-
design. Stankovic explored in his well-known Spring system how OS components can
be migred into hardware, and [Razali Jidin 2004] developed support for a multi-thread
programming model that provides a transparent interface to the CPU and FPGA based
components threads. The use of a unique language for hardware and software specifi-
cation is interesting, but this approach has some actual limitations: in some cases the
hardware algorithm is very different from the software algorithm for the same function
[Grattan et al. 2002], the compilers support for just a subset of SystemC and the gener-
ated code is inefficient [Cote and Zilic 2002]. In other hand, the use of several languages
in the design of embedded systems is very convenient for application development and
optimization but it can become an obstacle on the way to higher design productivity, and
some solutions and trends were explored by [Ernst and Jerraya 2000]

In this context, EPOS (Embedded and Parallel Operating System) is a viable al-
ternative to became a multiplatform Real-Time Operating System (RTOS) for embed-
ded systems. The EPOS system was born as a project to experiment with the concepts
and mechanisms of application-oriented system design [AOSD] [Fröhlich 2001]. EPOS
was first developed from PURE [F. Schön and Spinczyk 1998] framework of components
and, through AOSD, included improvements as scenario adapters and hardware mediators
that provide grate efficiency in the automatic generation of application-oriented operating
systems. Later EPOS was expanded to automatically generate not only run-time soft-
ware support (operating system) but also hardware support (IPs – Intellectual Properties)
that fulfills the application requirements, i.e., automatic generation of Systems-on-a-Chip
(SoC). This improvement is based on the concerns of abstractions and hardware mediators
(from AOSD) and IPs, assigning an IP for each mediator [Polpeta and Fröhlich 2005].

3. Development

In this project, we utilize the AOSD methodology to perform domain analysis and decom-
position on Real-Time systems. This enables the modification of EPOS’ abstractions and
hardware mediators and the development of new IPs to comply with AOSD methodology.
The analysis began with the identification of related concepts and functional and non-
funcional characteristics of Real-Time Systems. Based on that analysis, we are defining



families and members and their inflated interfaces [Fröhlich 2001]. These interfaces form
an abstract hardware/software interface under which all hardware support for real time
can be implemented, independent of the execution scenario.

Also based on that analysis, RTS domain characteristics are being included pri-
marily in software components to make EPOS a RTOS. Because of the way EPOS was
designed these real-time features can be selected/activated (or not) by an automatic config-
uration tool (already implemented) or by the programmer himself. Based on the inflated
interface specified by the application (e.g. System calls used) and on composition rules
and dependencies, the configuration tool is able to assign to each interface a member that
fulfills this interface and to activate scenario aspects and configurable features.

For example, the presence of a system call for thread creation with a parameter
informing its deadline (inflated interface) allows the configuration tool to infer a specific
component (family member) to be selected – the member ’real-time thread’. This mem-
ber may require the selection of other components, such as a member of the real-time
scheduler family, a member of the resources access protocol family and the exclusion of
members ’paged’ or ’segmented’ from the address space family. Some scenario aspects
can then be applied to the selected member, such as periodicity or hardness. Although
some members and scenario adapters can be automatically selected, it’s impossible to
infer, for example, which scheduler and task model has to be used. Therefore, some
real-time members that will compose the system have to be manually selected by the
programmer using a specific tool (currently implemented).

The real-time features that can be mapped into hardware or software could be de-
scribed in a single language, such as SystemC. However, this approach has limitations
mentioned before, and we have chosen to implement software and hardware versions in
C++ and VHDL respectively. This approach shows some obvious disadvantages when
compared to a single language, but it allows co-design without the actual limitations.
Moreover, both versions are included into the same file facilitating comparison and main-
tenance. GCC preprocessor and compiler directives are used to select either one of them
and to customize VHDL code, applying scenario aspects to it. After this, the VHDL code
is used as input to the Xilinx tools to generate the NetList, BitStreams and finally, the
ACE file, which contains both hardware and software to configure the FPGA. With this
process we actually generate synthesized SoCs, and not only simulated ones.

4. Conclusions
Currently several forms of hardware support for RTS have been proposed and imple-
mented. However, most of them are really simple when compared to the complexity of
real RTS and/or are isolated proofs-of-concept in the sense that they are just fixed imple-
mentations and not the result of a RTS design methodology with co-design and partition-
ing. We have shown that such an approach will seldom create reusable components for
different execution scenarios and then propose and develop reusable software and hard-
ware components for a system that already allows automatic generation of multiplatform
non-real-time SoCs.

We have briefly shown in this paper some strategies that are currently being used
to determine and to implement real-time hardware and software reusable components for
a highly adaptable new RTOS, which differs from traditional approach. Our contribution



is the use of AOSD and its techniques, as Aspect Oriented Programming, to develop and
integrate hardware components (focused on real-time support) and also significant im-
provements to EPOS project, including real-time support, co-design and partitioning. A
prototype of a generic, scenario independent hardware/software task scheduler compo-
nent is included in the EPOS repository and we successfully generate functional SoCs.
Finally, the conclusion of this project may represent an improvement to software engi-
neering and co-design for real-time systems. This work was partially supported by FINEP
(Financiadora de Estudos e Projetos) grant no. 01.04.0903.00.

References
Akgul, B. (2003). Hardware support for priority inheritance. In 24th IEEE International

Real-Time Systems Symposium - RTSS’03.

Cote, C. and Zilic, Z. (2002). Automated systemc to vhdl translation in hardware/software
codesign. In Proceeding of 9th International Conference on Electronics, Circuits and
Systems.

Ernst, R. and Jerraya, A. A. (2000). Embedded system design with multiple languages.
In Proceedings of the 2000 conference on Asia South Pacific design automation.

F. Schön, W. Schröder-Preikschat, O. S. and Spinczyk, U. (1998). Design rationale of the
pure object-oriented embedded operating system. In Proceedings of International IFIP
WG 10.3/WG 10.5 Workshop on Distributed and Parallel Embedded Systems.

Fröhlich, A. A. (2001). Application-Oriented Operating Systems. PhD thesis, Sankt
Augustin: GMD - Forschungszentrum Informationstechnik.

Grattan, B., Stitt, G., and Vahid, F. (2002). Codesign extended applications. In Proceeding
of International Workshop on Hardware/Software Codesign.

Kohout, P. and Jacob, B. (2003). Hardware support for real-time operating systems. In
Proceedings of CODES - ISSS’03.

Mooney, V. and Micheli, G. D. (2000). Hardware/software codesign of run-time sched-
ulers for real-time systems. In Proceedings of Design Automation of Embedded Sys-
tems, pages 89–144.

P. Kuacharoen, M. S. and Mooney, V. (2003). A configurable hardware scheduler for
real-time systems. In Proceedings of International Conference on Engineering of Re-
configurable Systems and Algorithms - ERSA’03.

Polpeta, F. V. and Fröhlich, A. A. (2005). On the automatic generation of soc-based
embedded systems. In Proceedings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation.

Razali Jidin, David Andrews, D. N. (2004). Implementing multi threaded system sup-
port for hybrid fpga/cpu computational components. In Proceedings of International
Conference on Engineering of Reconfigurable System.

Shalan, M. and Mooney, V. (2000). A dynamic memory management unit for embedded
real-time system-on-a-chip. In Proceedings of International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, pages 180–186.


