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Abstract—Time series prediction techniques reduce the num-
ber of messages generated at the application level, saving energy
spent in the communication and, consequently, extending the
network lifetime. Trickle is a well-known time series prediction
mechanism commonly used to decrease the number of trans-
mitted messages in Wireless Sensor Networks (WSN) and thus
save energy. This paper presents the Space-Time Derivative-
Based Prediction (ST-DBP), a novel Trickling mechanism to
suppress data transmission in space-time regions in WSNs. We
integrate ST-DBP with the Trustful Space-Time Protocol (TSTP),
an application-oriented, cross-layer communication protocol, and
compare two variations of the ST-DBP with the original DBP
using real data from a Solar Farm in terms of suppression data
ratio. Our results show that the two variations of the ST-DBP
outperform the original DBP.

Index Terms—Wireless Sensor Networks, Trickling Mecha-
nism, Data Suppression, Data Prediction, Space-time Regions.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been the focus of
intense research mainly in the last two decades, involving
a diverse set of topics, from communication protocols to
applications. The reason why WSNs have gained attention is
their applicability in areas such as environment monitoring,
agriculture, controlling and monitoring of industrial process,
and so on.

The main characteristic of a WSN is the limited resources
available (i.e., processing power, energy, and memory). Thus,
one of the challenges to design WSNs solutions is the max-
imization of the network lifetime. In this context, commu-
nication plays a critical role, because it is the most power
consuming task of the network nodes [1].

Common to many WSN applications is the periodic read
of sensors data. Usually, sensor nodes periodically read their
data and send them to a sink node [1]. In this case, a com-
munication approach based on the data suppression technique
employed by the Trickle Algorithm emerges as a potential
solution to maximize the lifetime of the network nodes.
However, the application must tolerate a small variation on
the data precision, which is a valid assumption for most of
the WSN applications [1].

The central idea of the Trickle’s suppression technique
is a time series prediction mechanism, which is embedded
into the sensor and sink nodes. The mechanism estimates the
next points of a time series. This estimative is carried out

in both sensor and sink nodes. Thus, it is possible to avoid
data transmissions, reducing the energy consumption without
decreasing the application QoS. At each data measurement
period, both sink and sensor nodes compute their prediction
models, so they both see the same data. If there is significant
deviation of the prediction, according to a threshold defined
by the application, the sensor node constructs a new model
and sends it to the sink, keeping the synchronization of their
models.

Time series prediction mechanisms are presented and eval-
uated in recent publications [1], [2], [3], [4]. These studies
clearly show the potential of this approach, which is able to
suppress more than 90% of the transmitted messages, and, in
some cases, it can reach a suppression rate of up to 99% [1].
However, these works do not consider the localization of the
sensor nodes to reduce the energy consumption even more.
When the spatial variation of a sensed physical quantity is
very low, the models generated by different and closely located
sensor nodes tend to be near from each other. In this case, a
generalization of the suppression technique to also consider
regions can reduce the energy consumption of the nodes and
thus increase the network lifetime.

In this paper, we propose a mechanism to generalize the data
suppression technique. Instead of applying data suppressing
node by node, we propose to apply the suppression technique
in a region containing several nodes. Our method, named
Space-Time Derivative-Based Prediction (ST-DBP), is based
on the Derivative-Based Prediction (DBP) algorithm [1]. We
integrate ST-DBP with the SmartData [5] and Trustful Space-
Time Protocol (TSTP) [6], which is a cross-layer trustful pro-
tocol specifically designed for WSN applications. We evaluate
ST-DBP in a scenario composed of Solar Farms. Our results
indicate that ST-DBP further increases data suppression with-
out degrading application quality requirements when compared
to the original DBP.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work. Section III presents an
overview of Smart Data and TSTP. Section IV explains the
original DBP. Section V shows the ST-DBP mechanism, a new
technique for trickling space-time regions. Section VI presents
the implementation aspects of this technique. In Section VII,
we evaluate the ST-DBP with real data from solar farms.
Finally, Section VIII concludes the paper.



II. RELATED WORK

Several proposed approaches to save energy in WSN focus
on optimizing the network stack, without being aware of
the transmitted data. Data suppression, in contrast, is an
application-level technique to reduce energy in the commu-
nication [3]. Recent works have used data suppression based
on tendency models to maximize the lifetime of a WSN (i.e.,
to reduce the energy consumption) [1], [3], [7], [8], [2], [9].

Derivative-based Prediction (DBP) is a data suppression
technique where a sensor node builds a linear model, based
on real measurements, and then sends the model to the sink
node [8]. The linear model is built through the calculation of
the derivate of a line between two points. These points are
obtained by the average of a set of points located in the edges
of a learning window. When the prediction cannot represent
real data (the model deviates from reality beyond what is
allowed by the application), a new model is generated and sent
to the sink node. Thus, this new model is considered in the
next predictions. If the prediction represents data according to
application threshold levels, no data transmission is required,
saving energy.

Raza et al. present application-level experiments using real
data and DBP [1], [8]. In their experiments, DBP obtained
a data suppression rate of up to 99%. It also had a bet-
ter performance in five of seven data sets, when compared
to other state-of-the-art techniques, such as Piecewise Lin-
ear Approximation (PLA) [10], Similarity-based Adaptable
Framework (SAF) [7], and Polynomial Regression (POR) [1].
However, the work shows that when the network stack is
considered, DBP triplicates the network lifetime. After some
modifications in the MAC and routing protocols, which are
responsible for a great number of control messages in the
network, the authors have obtained an improvement of about
seven times in the network lifetime [1].

Recently, two DBP variations were proposed by Barton and
Musilek, named Delayed DBP and DBP with look ahead [2].
Delayed DBP proposes a delay in the learning window, based
on the premise that calculating the slope of a line that begins
in the past and ends in the future results in better predictions.
In this way, it is possible to achieve a smaller number of
model updates, since Delayed DBP is aware of the near future.
This technique has obtained a reduction of 60% and 70%
of model updates when compared to the original technique,
with a delay overhead of 7.5 and 2.5 minutes, respectively.
Thus, this technique is not adequate for real-time systems,
due to the sink’s slightly delayed perception of reality. DBP
with look ahead changes the Delayed-DBP to make it feasible
for real-time applications [2]. Instead of delaying the learning
window, it uses a Recurrent Neural Network (RNN) to predict
future points that will be the base to construct the model. This
approach reduced about 90% of the model updates.

Istomin et al. evaluated the impact of data prediction at
the application-level, considering optimizations in the network
stack of a new protocol, named Crystal [3]. The authors show
that is possible to achieve low energy consumption only by the

usage of specialized hardware. As the conclusion presented
in [1], application-level prediction techniques have a bound in
the lifetime maximization.

However, by considering the sensor nodes localization we
show that it is possible to achieve better data suppression ra-
tios. Our proposed technique (ST-DBP) is based on the recent
proposed DBP [1], because it presents high data suppression
ratios. The idea behind ST-DBP (use the node localization) can
also be applied in other algorithms that use prediction models.

III. SMART DATA AND TSTP OVERVIEW

Trustful Space-Time Protocol (TSTP) [6] is an application-
oriented, cross-layer communication protocol for Cyber-
Physical Systems (CPS) on a WSN. TSTP focuses on ef-
ficiently delivering functionality recurrently needed by such
systems: trusted, timed, geo-referenced, SI-compliant data that
is resource-efficiently delivered to a sink or gateway, instead
of focusing on keeping the original protocol interfaces in a
modular, layered architecture with shared data. TSTP delivers
this functionality to applications through the SmartData con-
struct [5], which promotes a data-centric view of the network.
Both artifacts, described in this section, are fundamental for
the ST-DBP.

In TSTP, communication occurs among sensors and a spe-
cific node called sink. Sink is the node of a WSN that is
interested in information of space-time regions. Sensors are
nodes that measure one or more types of environment variables
(e.g., temperature, luminosity, etc) with a certain precision and
frequency, and are able to report these measurements to the
sink [6]. The sink’s interest in information of a space-time
region is announced by an interest message, according to the
semantics of SmartData, explained in this section.

A SmartData is a piece of data enriched with enough
metadata to make it self-contained in terms of semantics,
spatial location, timing, and trustfulness. It is meant to be
the only application-visible construct in the sensing/actuating
platform and therefore implicitly mediates all system-level
services, including communication, synchronization, and the
interaction with transducers and actuators. The data contained
in a SmartData is automatically updated from the network
according to the parameters specified at instantiation time.
Therefore, an application reads a sensor, simply accessing
the data inside SmartData through its interface. Similarly, the
actuation occurs by changing this data. In this case, messages
are automatically propagated over the network to command
actuators accordingly, until the new value is observed.

The SmartData interface is depicted in Figure 1. The Smart-
Data interface has two constructors1: the first one is used to
abstract local transducers, while the second is used to create lo-
cal proxies of remote transducers. In both cases, the binding of
a SmartData object with the corresponding transducer is done
via the Transducer class parameter. Every transducer is
supposed to declare constants, named UNIT and ERROR. The
first one is used to personify the corresponding SI quantity,

1In this work, we use the C++ language.



while the second is used to define the transducer absolute error.
For instance, a SmartData object instantiated with a transducer
specifying K (Kelvin) as UNIT and specifying 1.5 as ERROR
represents the SI quantity temperature with an accuracy of
±1.5 K. This SmartData can abstract a temperature sensor or
an air conditioning (i.e., a temperature actuator). In this paper,
we focus on the use of SmartData as an abstraction of a sensor.

+operator Value() : Value
+Smart_Data(region, expiry, period, fuser)
+Smart_Data(dev, expiry, mode)

+location(): Coordinates
+time(): Time

Smart_Data

local transducer

remote transducer

defines UNIT

Transducer

defines ERROR

Fig. 1: SmartData interface.

Local transducers are abstracted using SmartData objects
instantiated with the first constructor depicted in Figure 1.
The constructor’s first parameter, dev, is used to differentiate
multiple instances of the same transducer available on a given
node. The second parameter, expiry, defines the validity of
the data expressed relatively to the time they were produced,
so the expiry is refreshed on every SmartData update, just
like the period. Different components, tasks, or even functions
can instantiate SmartData objects bound to the same physical
transducer with different expiry times. It is, therefore, a per-
instance attribute. Application tasks in a system using Smart-
Data can be mostly aperiodic, with a periodic behavior being
implicitly accomplished by the traditional OS Periodic Task’s
wait() blocking method that is used to wait for a SmartData
update [11]. If a value different from zero is given as the
period, then the associated transducer will be periodically
sampled to update the SmartData and wait() will block
until the next period. Otherwise, the object encapsulating the
transducer will be invoked on every SmartData access.

Specifying an expiry smaller than the period is invalid. If
distinct SmartData objects using the same Transducer are cre-
ated with different periods, then the greatest common divisor
is used for sampling, but wait() on each object respects the
originally specified periods and so does the expiry. The last
parameter, mode, designates SmartData’s visibility: Private
to the process that created it, inaccessible from the network;
Advertised on the network for remote sensing; or Commanded
remotely over the network, which is used by actuators. In
this paper, we consider only instances of SmartData with the
Advertised mode.

Remote transducers are also abstracted using instances
of SmartData. Objects created with the second constructor
depicted in Figure 1 are local proxies to remote transducers.
All the system-level procedures needed to ensure a consistent
semantic for such objects is transparently carried out by the
implementation, including communication, synchronization,

and scheduling. The constructor’s first parameter is used to
specify a Space-Time region of interest as:

Space-T ime Region(x, y, z, r, t0, tf )

where x, y, z designates the center of the interest region,
r designates its radius, and [t0, tf ] designates the interest’s
time interval. The interest region is used in combination with
the SI Physical Quantity associated with a SmartData object
through the UNIT constant defined by the Transducer given
as parameter. The instantiation of a remote SmartData implies
the announcement of an interest for an SI Quantity in a given
region of space for a given interval of time. SmartData objects
(created with the first constructor) matching the criteria will
reply to the interest in accordance with parameters period
and fuser. A zero period means that all updates on the
remote nodes will be reported, determining an event-based
mode of operation. Other values require matching objects to
periodically send a response every period units of time,
starting at t0 and repeating until tf . This defines a time-
triggered operation for the network. Different periods are han-
dled just like for local transducers, so values for this parameter
must be carefully chosen. The last parameter, fuser, is used
for data fusion and is better explained in Section VI (it is
extended).

Similarly to local transceivers, remote ones abstracted as
SmartData also have an Expiry. Once again, it is a client-side
information, so several SmartData objects acting as proxies to
the same transducer can have different expiration times. Nodes
with SmartData exported as Advertised will manage proper
response messages to match all interests. The shortest of the
expiries is used in the network packet and can be used for
expedite routing on the network while expired messages are
simply dropped, and therefore avoiding wasted resources to
produce invalid data that will be discarded at the destination.

Independently of how a SmartData is created, three common
methods can always be invoked on it: a native type conversion
operator (summarized as operator Value() in Figure 1),
location(), and time(). The first enables implicit con-
versions from and to the type of the encapsulated data (e.g.,
integer, real), so SmartData can be transparently operated. The
second returns the location where the data was produced, while
the third returns the time data was produced. In this paper, we
focus on scenarios where sensor nodes have local transducers
and the sink node has remote transducers.

IV. DERIVATIVE-BASED PREDICTION OVERVIEW

Derivative-Based Prediction (DBP), used in this work, is
a data prediction technique compatible with applications that
have data quality restrictions [1]. It is adequate for resource-
constrained WSN applications, because it is simpler than other
existing Trickle methods [1].

DBP has an assumption that measured data of a sensor node
can be approximated, considering short and medium intervals
and a linear precision model. This linear model represents
data with an error within the tolerance margin, which must
be part of the application requirements. A time interval, in



which the deviation from the model can occur, is defined as
ET . The tolerance is defined as EV = (�rel, �abs), where �rel

is the tolerable relative error and �abs is the tolerable absolute
error. DBP tolerance and time interval are formally defined as
follows [1]:

Definition 1. Let Vi be a sensed value taken at time ti and EV
the tolerance value. From the application perspective, reading
a value Vi becomes equivalent to reading any value V̂i in the
range RV defined by the maximum error, V̂i ∈ RV = [Vi −
�, Vi + �], where � = max{ Vi

100�
rel, �abs}. In other words, the

application considers a value V̂i ∈ RV as correct.

Definition 2. Let ΔT = (tk − tj) be a time interval,
and V̂ΔT = {V̂j , ..., V̂k} the set of values reported to the
application during ΔT . The time tolerance ET is the maximum
acceptable value of ΔT such that all the values reported in this
interval are incorrect, i.e., V̂i /∈ RV , ∀V̂i ∈ V̂ΔT .

In many applications, the amplitude variation of a time
series can be high, that is, the measured values can be
very small or very large. An example of this is the global
irradiation, which can have an amplitude from 1 W/m2 to
more than 1000 W/m2. This is the reason why a tolerance
value is defined in terms of relative and absolute errors. Thus,
it is possible to specify maximum absolute and relative errors,
for both small and large values.

Each sensor node executing DBP constructs a learning win-
dow W , which is formed by the last w measured values. Be Wt

the learning window at a time t, w� the current window size,
and p the given period, we have: Wt = {Vt−((w�−1)∗p), ..., Vt},
for every w� > 1. When W reaches the maximum size w,
the sensor node constructs the first model M, calculating the
line inclination α that crosses two defined points. The first
point is the average of the oldest l points of W and the
second point is the average of the l most recent points of
W , named border points. Thus, a linear model M generated
at a time t0 can be described as a function y(t) such as:
V̂t = y(t) = α ∗ (t − t0) + β, where β is the average of
the oldest l points of W .

This first model is then sent to the sink node, which is
considered valid. At each period, the sensor node updates the
learning window with a new measure Vt and compares it with
the DBP predicted value V̂t using the current model M. If
the DBP predicted value is within the tolerance EV , M is
still a valid model and the sink continues generating values
based on this model. Otherwise, if the measures are out of the
tolerances EV and ET , a new model M� is built by the sensor
node, based on the last w measured values, and sent to the
sink node.

V. ST-DBP FOR TRICKLING A SPACE-TIME REGION

The original DBP, described in the previous Section, is
limited to only one sensor. Thus, it is adequate for a node
by node monitoring. From the region-to-sink perspective of
TSTP, however, if the obtained information of a desired space-
time region is trustful and within the defined tolerance levels,

it does not matter from which sensor the information is
generated. TSTP was designed in such a way that the sink
node announces its interests for sensing data and sensor nodes
deliver it whenever possible [6]. This characteristic requires
DBP to be expanded in order to reach data suppression for
space-time regions and not for individual nodes.

We propose an extension of the DPB, named Space-Time
Derivative-Based Prediction (ST-DBP). In the ST-DBP model,
each node n ∈ NR belongs to a region of interest R.
Each region R has a finite number of nodes. Each node
n ∈ NR creates a tuple �α,β, τ, θ�, where α and β are the
model coefficients, τ is the instant in which the model was
generated, and θ is a (x, y, z) coordinate of the model origin.
The difference of the ST-DBP in comparison with DBP is the
spatial component in the model and the way nodes synchronize
the model (all nodes in a region of interest R and the sink
node synchronize the model).

ST-DBP introduces the concept of a trickling
space-time region, which is a node agglutination rep-
resented by the same model. This concept is formalized by
the Definition 3.

Definition 3. Be NR a finite set of nodes in a space-time
region R. A trickling space-time region is a set
of nodes Ti ∈ 2N

R \∅ such that ∀n ∈ Ti,¬∃j : MT
j was gen-

erated closer to n than MT
i , where MT

i is the model of the
trickling space-time region Ti.

ST-DBP initially assumes that Ti = NR and MT
i is the

first generated model and announced by a node n ∈ Ti. Thus,
∀n� ∈ Ti that listens to this announcement, the trickling
space-time region of n� is ML

n . Consequently, the first
node to announce a model will represent its trickling
space-time region by its own model. The node will also
update and announce its model in each updating in order to
keep the synchronization with other nodes. On the other hand,
all the other nodes verify, at every data period, the model of
their own trickling space-time regions, dropping
their model announcements until a region partitioning occurs.

The partitioning of a region occurs in a distributed way,
when a model MT

i from the trickling space-time
region Ti deviates from the reality of a node n ∈ Ti,
as defined by the Definitions 1 and 2. When this occurs,
a node n builds and announces a new local model ML

n ,
based on its learning window, and starts to represent a new
trickling space-time region. In this case, every
node that listens to the announce of a new trickling
space-time region must define whether it stays in the
current region or changes to the newly created one. The node
will only change its trickling space-time region if
the distance to the origin of the new region is smaller than the
distance to the origin of the current region.

As a consequence, every node will have the origin of its
trickling space-time region as close as possible to
its location. In the worst-case, there will be as many regions as
nodes. In this case, ST-DBP degrades into the original DBP in



terms of suppressed messages (i.e., it applies data suppression
node by node, instead of regions).

The sink node has more computational power and less
energy restrictions than sensor nodes. Thus, it is able to
analyze every models from a region of interest and decide
how and when to perform an agglutination of the partitioned
regions. When the sink detects that two or more regions have
close and stable models, it computes a new model based on
those from the regions and announces it as part of a new
region of interest (that includes all analyzed regions). When
the sensor nodes receive the model from the sink, they assume
this new model.

VI. ST-DBP DESIGN AND IMPLEMENTATION

The ST-DBP Trickle mechanism is implemented as a new
class ST_DBP, together with an aggregation of the SmartData
class, as demonstrated by Figure 2. Both classes abstract all
tasks related to the Trickle mechanism, which are transparent
to the application.

+operator Value() : Value
+Smart_Data(region, expiry, period, fuser)
+Smart_Data(dev, expiry, mode)

+location(): Coordinates
+time(): Time

Smart_Data

local transducer

remote transducer

Transducer

defines UNIT, ERROR and DBP_PARAMS

+predict(time) : Value
+trickle(sensed) : bool
+ST_DBP(tolerance)

ST_DBP

Fig. 2: Trickling SmartData.

The ST_DBP class constructor (see Figure 2) has a param-
eter (tolerance) that defines the acceptable time and value
tolerance levels by the application, as described in Section IV.
This parameter is extracted from the requested precision of the
TSTP Interest Message.
Transducer defines the ST-DBP parameters, i.e., the

learning window size w and the amount of points l that
make up the window borders. Thus, the ST_DBP abstracts
the operation carried out in a learning window, implemented
as a circular queue (the type and size of the queue are defined
at compile-time by the Transducer).

The ST_DBP class implements the trickle(sensed)
and predict(time) methods. The former abstracts the
required actions for the ST-DBP correct functioning in the
sensor node. This method is used to create a SmartData object
and to decide whether Trickle must act or not. The latter
computes the current model M to obtain the predicted V̂i at the
instant ti (time). This method is used in the sink node within

a SmartData object, which abstracts a remote Transducer,
to obtain a predicted data when requested by the application.

A. ST-DBP Trickle Algorithm
ST-DBP Trickle Algorithm (Algorithm 1), imple-

mented in ST-DBP::trickle(sensed), is executed by
each sensor node at each data period. Initially, the algorithm
inserts a new sensor data (sensed) into the learning window.
Then, it verifies if the sensor node already knows its region
model (line 4) and, if it does not (i.e., MT

i = null), the node
creates a first local model (line 6) and considers its model
as the region model just if the learning window is complete
(line 5). In this case, the sensor node starts to automatically
represent its region.

Algorithm 1 ST-DBP Trickle Algorithm

1: procedure Trickle(sensed)
2: sendModel ← false
3: Wi.insert(t, sensed)
4: if MT

i = null then
5: if Wi.size ≥ w then
6: MT

i ← ML
i ← makeModel(Wi)

7: sendModel ← true
8: end if
9: else

10: if checks(MT
i , sensed, t) then

11: MT
i ← ML

i ← makeModel(Wi)
12: sendModel ← true
13: end if
14: end if
15: if sendModel then
16: Qi.insert(makeModelMsg(ML

i ))
17: end if
18: end procedure

If the sensor node already knows its region model MT
i , the

algorithm evaluates this model by comparing the prediction
result with the sensed value at the instant t. This evaluation
is performed by the checks function (line 10). It returns true
when all requirements of the Trickle mechanism are satisfied
and false otherwise. When the requirements are not satisfied,
it means that the current region model deviated beyond the
tolerance defined by the interest, generating and announcing
a new local model. Moreover, the sensor node assumes this
model as the model of a new region, in which it starts to
automatically represent.

At the end of its execution, the algorithm verifies if there is
a new model, which is a candidate to represent the region of
the sensor node. If so, a message containing the model is built
and inserted into the Qi messages queue to be later transmitted
by the TSTP (line 16).

B. ST-DBP Model Update Algorithm
ST-DBP Model Update Algorithm is executed in a

sensor node whenever a model or interest message is received
by TSTP to update the model of the sensor node. The updating
process is implemented according to the Algorithm 2, which
deals with two possible cases:

1) Case 1: if m is a model message, the algorithm evaluates
the received model and its origin (line 7). If the origin



of the received model is closer than the origin of the
current model in the sensor node, the algorithm updates
the model.

2) Case 2: if m is an interest message and has a model, the
algorithm verifies if the sensor node is within the interest
region (line 11). If so, the received model is obligatorily
considered as the region model of the sensor node. This
is the expected behavior when the sink node sends an
interest with a model in order to agglutinate regions.

Algorithm 2 ST-DBP Model Update Algorithm

1: procedure ModelUpdate(m)
2: modelUpdate ← false
3: fromSink ← false
4: if m.isModelMessage then
5: D ← distance(here(),m.M.θ)
6: Di ← distance(here(),m.MT

i .θ)
7: if D < Di or M.θ = MT

i .θ then
8: modelUpdate ← true
9: end if

10: else if m.isInterestMessage and m.M �= null then
11: if here() is inside m.sphere then
12: modelUpdate ← true
13: fromSink ← true
14: end if
15: end if
16: if modelUpdate then
17: if ∃eQ ∈ Qi : eQ is a ModelMsg and eQ.M = ML

i then
18: if fromSink or checks(m.M, getSensed(), t) then
19: MT

i ← m.M
20: delete Qi.remove(eQ)
21: end if
22: else
23: MT

i ← m.M
24: end if
25: end if
26: end procedure

C. ST-DBP Bootstrap

Given an interest of the sink node in a determined space-
time region, all sensor nodes that answer to this interest
measure a data from the same unity, and consider the same
data period. At the ST-DBP bootstrap, all sensor nodes answer
to this interest and start measures in their respective learning
windows, until they are filled. When the windows are filled,
sensor nodes verify the existing of a model to represent the
region, as the model still does not exist, each node creates
a local model and assumes it as being its region model,
announcing it to other nodes.

However, as all nodes have the same data period and their
clocks are synchronized by TSTP, there is a possibility of
all nodes execute these tasks at the same time, causing a
generalized partitioning of the region at the instant t0. To
solve this, we explore the cross-layer design of TSTP, which
allow us to search and remove a message from the MAC’s
transmission queue before it is real transmitted. TSTP-MAC
verifies the channel before starting a transmission and then
detects a message that is being transmitted. Thus, if this
message is for a model, TSTP notifies a Trickle com-
ponent, that executes the Algorithm 2. When the algorithm

realizes a new model (line 16), it verifies if there is a recent
message containing its local model stored in the transmission
queue (line 17). If so, the algorithm verifies if the new model
respects the acceptable tolerance, removing the message from
the transmission queue if it does. Otherwise, the algorithm
keeps the local model as being the region model and the
message is not removed from the transmission queue.

D. Backward and Forward

Greedy Forwarding Algorithm [12] is proposed to
avoid the retransmission of messages for incorrect destina-
tions. The routing algorithm used by TSTP performs a ge-
ographically controlled flooding, where transmissions always
have a positive progress towards the destination. This behavior
can introduce problems in ST-DBP, since a generated model
in any point of a interest region and sent to the sink can not
be listened by one or more nodes that are in the opposite
direction of the sink node. A solution for this problem is a
geographically controlled flooding in all directions, dropping
a message whenever it is one hop out of the interest area and
with a negative progress towards the destination.

E. ST-DBP Regions Agglutination Algorithm

ST-DBP Regions Agglutination Algorithm
(Algorithm 3) is executed in the sink node and is responsible
for agglutinating partitioned regions by evaluating the current
region models.

Initially, the algorithm generates a list L = { S� | S� ∈
2S ∧ |S�| ≥ φ }, where S is the set of models in the
current regions and φ is the minimum amount of regions for
agglutination, descendingly sorted by |S�|. For each S� ∈ L,
the algorithm evaluates pairs of models (MT

i ,MT
j ) ∈ P =

{(x, y) ∈ S� ×S�| x �= y}. For each pair of model p ∈ P , the
algorithm verifies if the greatest deviation from one model to
another within a window of w predictions, deviates beyond a
portion ψ of the tolerance EV , defined by the interest in which
the models were generated.

A set of regions corresponding to a set of model S� is
agglutinated when: (i) there is at least one model MT

x of this
set whose the maximum deviation when compared to other
models is equal to or less than a portion ψ of tolerance EV ; and
(ii) this deviation is equal to or less than the deviation of any
other model in the set when performed the same comparison,
i.e.,

∃x¬∃y{x, y ∈ S� | f(y, S�, w) < f(x, S�, w)}
where f(x, S�, w) is the function that calculates the maximum
deviation of the model x in relation to all models of S�, within
a window of w predictions.

When the algorithm finds a condition to perform an aggluti-
nation of a set of regions, it builds and stores a new message of
interest in a region that encompasses all sensor nodes related to
the evaluated set of models. This message has the model MT

x ,
representing the agglutinated region. After that, the algorithm
removes the models replaced by MT

x and generates a new list
L. This process is repeated until the generated set L is empty



Algorithm 3 ST-DBP Regions Agglutination Algorithm

1: procedure RegionsAgglutination
2: done ← false
3: L ← { S� | S� ∈ 2S ∧ |S�| ≥ φ } ordered by |S�| desc
4: Agg ← { }
5: while |L| > 0 and ¬ done do
6: done ← true
7: for each S� ∈ L do
8: minDeviation ← ∞
9: model ← null

10: for each s ∈ S� do
11: maxDeviation_S ← 0
12: for each p ∈ {(x, y) ∈ S� × S�| y �= x ∧ x = s} do
13: deviation ← checksPair(p.x, p.y, w)
14: if deviation > maxDeviation_S then
15: maxDeviation_S ← deviation
16: end if
17: end for
18: if maxDeviation_S < minDeviation then
19: minDeviation ← maxDeviation_S
20: model ← s
21: end if
22: end for
23: if checkDeviation(minDeviation, ψ, EV ) then
24: I ← makeInterest(makeSphere(S�),model)
25: Agg ← Agg ∪ {I}
26: S ← S \ S�

27: done ← false
28: Break
29: end if
30: end for
31: L ← { S� | S� ∈ 2S ∧ |S�| ≥ φ } ordered by |S�| desc
32: end while
33: if |Agg| > 0 then
34: Agg ← Agg order by (4πr3)/3 desc
35: for each Ai ∈ Agg do
36: Qi.insert(Ai)
37: end for
38: end if
39: end procedure

or none agglutination has been carried out in the L models.
At the end, the algorithm inserts the generated interests, in
descending order by the region volume, into the transmission
queue to be later announced.

VII. ST-DBP EVALUATION

In this Section, we compare ST-DBP with the original DBP
technique. This evaluation is carried out in an environment that
simulates the communication among nodes and all mechanism
properties described in Sections IV and V.

Our evaluation uses real temperature data, collected during
10 days by 10 sensors on a Solar Farm. The sampling period is
one minute, giving a total number of 14,400 samples. We use
the suppression ratio (SR) [1] as the first comparison metric:

SR = 1− messages generated with prediction

messages generated without prediction
(1)

SR varies from 0 to 1. The greater is its value, the more
efficient is the technique.

We use the same parameters as in [1] for the value EV
and time ET tolerances, and the size of the learning window
w and its borders l. The only exemption is the relative error
�rel, which defines an interval of values. We also define the

parameters φ and ψ of the ST-DBP agglutination algorithm,
executed in our evaluation at every 15 minutes, whenever
the number of current models is greater or equal to φ. All
parameters used during the evaluation are defined in Table I.

The network deployment consists in a sensor distribution
along a single solar array string. We consider that all models
are delivered to all nodes within an interest region. This
assumption is made, because the ST-DBP is sensitive to
the behavior of the lower-layer network protocol, especially
routing. It because, in an ideal case, all model messages must
be delivered to all sensors nodes inside of the interest region.
Since all sensor nodes have the same dataperiod and their
clocks are synchronized, the end-to-end delay is a factor of
impact too for the mechanism performance. However, it is out
of this work, and future actions will focus on this evaluation.

TABLE I: Parameters used during the evaluation.

�rel �abs ET w l φ ψ
(0 to 10 at every 0.5)% 0.5oC 2 6 3 2 0.2

We compare two ST-DBP versions with the original DBP.
The first one, named ST-DBP W/oAgg, does not implement
the agglutination algorithm (Algorithm 3). So, it only uses
the geographic proximity of the announced models. The sec-
ond version, named ST-DBP Full (or only ST-DBP), is the
complete version of the ST-DBP with all algorithm described
in Section VI. These two versions allow us to compare the
performance gains related to the agglutination mechanism.

Figure 3 shows the obtained results. ST-DBP has presented
significant better results compared to the original DBP. With a
low �rel of 1.5%, ST-DBP has a difference in the suppression
ratio of 3.17%, totaling 97.94%, which is a significant gain
because the DBP suppression ratio is already high. With �rel

of 10%, ST-DBP Full has present the higher suppression ratio,
of 99.7%. When compared to the previous work [1], with �rel

of 5%, ST-DBP has reached a suppression ratio of 99.32%
against a ratio of 98.18% from the original DBP.

Moreover, the ST-DBP without agglutination (ST-DBP
W/oAgg) has also shown better performance than the original
DBP. For instance, although small, with a �rel of 5%, the
difference between the two approaches was 0.48%.

The results of simulations of 10 days, with �rel of 1.5%,
are summarized in Table II. With the ST-DBP Full, in this
configuration, occurred 2838 models updates, 428 region
partitions, and 130 agglutinations. The ST-DBP Full has
reached a maximum suppression interval of 5 hours and 20
minutes (19200 s), against a maximum of 2 hours and 47
minutes (10020 s) of the original DBP. In average, ST-DBP
Full increased the suppression intervals by 0.92 times when
compared to the original DBP.

An explanation to this gain promoted by the ST-DBP is the
main characteristic, of grouping the sensor nodes in regions.
The frequency plot depicted in Figure 4, presents a comparison
of the distribution of partitioned regions number along of the
simulation.
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Fig. 3: Suppression ratio of the evaluated parameters in the
DBP, ST-DBP W/oAgg, and ST-DBP Full.

TABLE II: Summary of the simulations with �rel of 1.5%.

Metric DBP ST-DBP
W/oAgg Full

Mean of partitioned regions − 9.17 3
Agglutinations / 2h − − 1.08

Model Updates / 5 min 2.62 2.45 0.98
Partitions / 30 min NA 0.02 0.89

Maximum suppression interval 10020 s 19200 s 19200 s
Mean suppression interval 413.79 s 430.28 s 639.29 s

1 2 3 4 5 6 7 8 9 10

DBP
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ST−DBP Full
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Fig. 4: Distribution of partitioned regions number, with �rel

of 1.5%.

For this comparison, we consider the number of regions
partitioned with the original DBP, the maximum possible for
the entire simulation interval, because there is one model
for each of the ten sensor nodes. With ST-DBP W/oAgg
the region of interest reached the maximum partitioning after
39.66 hours, which corresponds to 83.47% of the simulation
time. ST-DBP Full remained 75.18% of the time with a regions
number less than or equal to three, 24.52% between four and
seven regions, and less than 0.3% above seven regions.

VIII. CONCLUSION

None of the recent proposed data suppression techniques
based on time series prediction explores the spatial variation of
time series. In this paper, we present an extension of the DBP
data suppression technique, named Space-Time Derivative-
based Prediction (ST-DBP). ST-DBP represents data from a
set of sensors within a region in a single model. We evaluated
ST-DBP using real data from a Solar Farm and compared it
with the original DBP in terms of suppression ratio. ST-DBP
outperformed DBP for up to 3.17%. As future work, we plan
to evaluate the energy consumption gains of ST-DBP using a
real WSN platform.
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