
Resource Management for Embedded Systems

Roger Kreutz Immich, Diego Luis Kreutz and Antônio Augusto Fröhlich

Laboratory for Software and Hardware Integration

Federal University of Santa Catarina

PO Box 476 – 88049-900 – Florianópolis, SC, Brazil

{roger,kreutz,guto}@lisha.ufsc.br

Abstract

Classical strategies for resource management in

operating systems are often complex and innapropriate

for embedded systems. Implementations for these

strategies may use either virtual function tables or long

conditional structures to provide transparent access

to different resources. This overhead is unacceptable

for embedded systems. The EPOS operating system

provides flexible and transparent access to resources

for applications without incurring in unnecessary

overhead. Metaprogrammed structures are used to

predict, according to application usage and in compile

time, whether a resource must use a polymorphic

representation or may be accessed through direct

calls. This way, virtual function tables are only used

in the system when strictly necessary, and thus saving

resources. In this article, we show that this strategy is a

viable alternative for resource management in embedded

systems.

Keywords: Resource Management, Static Meta-

programming, Operating Systems

1 Introduction

One of the main functions of an operating system is to

manage hardware and software resources in a transparent

and efficient way. General purpose systems often have to

manage a great amount and variety of resources. Classical

strategies of resource management in operating systems

are thus often complex and dependent of application

domain.

In order to provide application programmers with a

reusable resource management application programming

interface (API), for example, through a file system

interface, general purpose systems often make use of

conditional structures or virtual function tables in their

implementation. The system doesn’t know a priori what

type of resource it must manage, and must provide access

to all possible resources through a common interface. This

causes the system to aggregate code blocks that may never

be executed, but nonetheless will occupy system memory,

and occurs in runtime overhead.

In embedded systems, applications typically use less

resources than in general-purpose system. If, for example,

an embedded application uses a single type of resource,

an application-tailored operating system could provide

management to that single resource, without incurring

in runtime overhead or aggregating unnecessary code

blocks. If an application, however, uses n resources,

this operating system should also be able to provide a

metamorphical, uniform interface for managing these n

resources.

EPOS (Embedded Parallel Operating System) is an

application oriented operating system that provides

an adaptive, flexible and transparent interface for

resource management[1]. Through the use of static

metaprogramming techniques, and based on application

analysis, it is possible to predict in compile time whether

resources may be managed through a direct call or

polymorphic interface. This way, only the absolutely

necessary overhead is introduced into the system.

This paper elaborates on the resource management

strategy in EPOS. Section 2 presents the EPOS

metaprogrammed resource management framework.

Section 3 evaluates the strategy, presenting a case study

and evaluating overhead and performance of resource

management in EPOS. Section 4 discusses related work.

Section 5 discusses the results and finalizes.

2 Resource Management in EPOS

Resource management is a key point in operating

system performance and usability. In the particular case

of application-tailored operating systems [1], resource

management is a specially interesting problem, as the

application itself defines what resources must be managed

in a given system instance, for a given execution

environment. The application programmer must be

provided with reusable interfaces, and with transparent

component selection mechanisms.

One way to deliver transparent, adaptative resource

management in an application oriented operating

system is through the use of static metaprogramming.

Metaprogrammed frameworks allow the system to

select adequate components for resource management,



traits.h

Network 1

Network 2

Network 3

Application

Source code

Application

Binary

Metaprogram

Network 3Network 2Network 1

Compiler

Figure 1. How the metaprogram works

generating flexible interfaces that may either generate

static function calls or virtual function tables, according

to application’s needs and in compile-time.

EPOS relies on a specially developed

metaprogrammed library to provide efficient and

flexible resource management. Conditional structures

(e.g. IF-THEN-ELSE and operators EQUAL are defined

by this library, and implemented as described in [2].

These library functions are not restricted to resource

management, and may be used elsewhere in the system.

Figure 1 illustrates the EPOS resource management

resolution process which is applied in compile time.

In the first step, macro components that satisfy user

requirements are selected through application code

analysis [3]. In the second step, specific, platform-

dependent components are selected to become part

of the system’s final instance. In this phase,

the metaprogrammed framework eliminates all virtual

function call whenever possible, reducing final object

code size.

As an example, if an application needs to use two

network cards, the programmer simply declares two NIC

objects. In compile-time, the application is analyzed

according to the selected platform. The metaprogrammed

framework identifies the types of network cards available

in this instance of the system. If two network cards of

different types are available, the resource management

interface for these cards will present the same interface,

and its implementation will be polymorphic. If two

network cards of the same type are available, the resource

management interface will still be uniform, but will

provide direct access to the actual device, with no virtual

function call overhead. This process requires no further

NIC nic0(0);

NIC nic1(1);

//thead 0

while(1){

// ...

nic0.send(BROADCAST, PROTOCOL, "A", 1);

}

//tread 1

while(1){

// ...

nic1.send(BROADCAST, PROTOCOL, "A", 1);

}

Figure 2. Sample Application

user interaction than to select and configure the target

platform, and is transparent to the application.

Considering three hypothetical platforms "A", "B"

and "C", and two network cards "X" and "Y". The

programmer might use a similar code to the one

presented in Figure 2 for different all three platforms.

If that application were compiled for the hypothetical

platform "A", with two network cards of type "X", the

polymorphism of objects nic0 and nic1 will be replaced

by direct calls to the actual instances of the network cards

"X". The same process would be repeated for a supposed

architecture "B", that has two network cards of type "Y".

The great advantage is that the user application continues

the same one, transparent and with a high degree of code

reuse. On the other hand, the polymorphism could not be

eliminated for platform "C", because, it makes use of one

network card "X" and another network card "Y". In this



template <> struct Traits<PC_NIC>: public Traits<PC_Common>

{

typedef LIST<PCNet32, PCNet32> NICS;

static const unsigned int PCNET32_UNITS = NICS::Count<PCNet32>::Result;

static const unsigned int PCNET32_SEND_BUFFERS = 8;

static const unsigned int PCNET32_RECEIVE_BUFFERS = 8;

static const unsigned int E100_UNITS = NICS::Count<E100>::Result;

static const unsigned int E100_SEND_BUFFERS = 8;

static const unsigned int E100_RECEIVE_BUFFERS = 8;

static const unsigned int C905_UNITS = NICS::Count<C905>::Result;

static const unsigned int C905_SEND_BUFFERS = 8;

static const unsigned int C905_RECEIVE_BUFFERS = 8;

};

Figure 3. Description of the network cards in the traits file

in case, it is only possible to determine which calls goes

to an specific network card in runtime.

2.1 Resource Management Metafunctions

A metaprogrammed LIST construct is used to generate

a metalist in compile-time witch contains the available

resources of a given type in the system. An configuration

repository contains details regarding configuration and

characteristics of all resources that may be used in a given

platform. Figure 3 illustrates a sample traits configuration

archive for the PC platform (Intel IA32 Architecture) in

EPOS. In that example, configuration values for number

of sending and receiving buffers are defined for three

network devices: PCNET32, E100 and C905. This

information will be pertinent in compile time, during the

definition of an instance of the respective component.

The polymorphic construct returns a boolean value

obtained through the application analysis in compile-time

using the previously defined metalist. When the system is

configured with different devices of the same class (e.g.

the PCNet32, E100 and C905 network cards defined in

figure 3), this construct returns TRUE indicating that the

use of the polymorphism will be necessary. When the

metalist has only one element, or several elements with the

same type, this function returns FALSE, indicating that

the polymorphism can be eliminated and direct calls can

be used to interact with the devices present in the list.

The polymorphic construct is used in a

metaprogrammed conditional structure, that defines

a Base variable (figure 4). The Base will be either a

pointer for virtual methods (when polymorphic) or a

pointer to an actual device (when not polymorphic),

allowing direct calls to the device.

3 Evaluation

In order to test the efficiency of resource management

in the EPOS, a simple application was implemented that

sends the "A" character through the network interfaces.

Two sample target configurations were use: one with

template<typename NICS>

class Meta_NIC {

//...

public:

typedef typename IF<polymorphic,

NIC_Base,

typename NICS::template

Get<0>::Result>::Result Base;

// ...

};

Figure 4. Conditional Structures for
Removing Polymorphism

a single network card, and another with two different

types of network cards. This experiments demonstrates

the percentage of resource management that is eliminated

when virtual function calls are removed from the system.

We developed and compiled this application for the IA-

32 architecture. Table 1 presents data and code memory

sizes for test case A (concrete) and B (polymorphic).

These values demonstrate that the resources management

in the EPOS carried through in compile time, optimizes

memory usage, allocating space only for the resources that

really will be used in the application in question.

Test Case A Test Case B

.text 19308 19668

.data 88 88

.bss 432 432

Table 1. Size in bytes for the Test Case A
(Single NIC) and B (Two Different NICs)

In a second experiment, we measured the access time

to resources in the EPOS system. The measurements were

taken by measuring the time immediately before calling



Test Case A Test Case B

Time 13.6 14.61

Table 2. Time in microseconds for access to
a NIC in Test Case A and B

the send method, and when entering the actual send

method in the NIC driver. We executed 100 iterations with

1000000 measurements each over a VMWare emulator in

an Athlon64 3000 machine. Table 2 presents access time

in microseconds for both test cases. These measurements

demonstrate the efficiency of removing polymorphism

whenever possible in a resource management strategy.

Through the use of the resource management strategies

in EPOS it is possible to provide memory economy and

to improve the access time to the resources. Memory

economy is reached through the elimination of everything

that is not be to the application execution, leaving the

final code tailored to this application. The improvement

in the access time to the peripherals is reached replacing,

in compile time, virtual methods for direct calls.

4 Conclusion

The use of the static metapramming techniques

to provide optimization in the resources management

strategies for EPOS revealed a viable alternative for

embedded systems. Despite the difficulties introduced

by metaprogramming constructs, such as the increase

of the complexity, difficulty of depuration and greater

compile time, it was shown that that it is possible to use

isolate its usage in the system only in the places where

it becomes necessary, keeping the original structure in

the others parts, continuing with the original flexibility

and providing the necessary optimization. Current

work focuses on further evaluating this techniques, and

comparing it to other existing solutions.

References

[1] A. A. M. Froehlich, Application-Oriented Operating

Systems, GMD - Forschungszentrum Informationstechnik,

1 edition, 2001.

[2] R. Robson, Using the Stl - The C++ Standard Template

Library, Springer-Verlag, 2 edition, 1999.

[3] F. V. Polpeta and A. A. Fröhlich, “On the Automatic

Generation of SoC-based Embedded Systems”, in In:

Proceedings of the 10th IEEE International Conference on

Emerging Technologies and Factory Automation, 2005.


