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ABSTRACT

In this paper we introduce a method to interfacedlvare components with embedded Java applicatidosess to
hardware devices is an important requirement fopexided software since the embedded system musidhteith the
environment where it is inserted on. At the sametithe use of very high-level languages, suctaas, Jacilitates the
development of embedded systems because they prdemtures such as object-orientation, automaticnong

management, and memory protection. We have evaluatemethod in terms of performance, portabilityd memory
footprint. We also have developed Java bindings &ocomponent for motion estimation in H.264 videming,

demonstrating the usability of our approach ina-veorld scenario.
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1. INTRODUCTION

Java implementations that have embedded systemasgess must provide developers with a way to @bntr
hardware devices. This is highly desirable sincbedded system applications run close to the haelimar
the sense that they use hardware devices suchnasrseand actuators to interact with the envirorimen
transmitters and receivers for communication, amers for real time operations. At the same timeyal
applications for embedded systems must fulfill @hstraints of memory consumption, time, and energy
which could be present in such embedded systems.

Foreign Function Interface (FFI) like tdava Native Interfacés the mechanism used by Java platforms
to access hardware devices and memory. In factrakedava packages such as java.io, java.net aadjst
are implemented using FFI facilities [Liang 1999pwever, as we will explain in section 2, the makis
provided by Java have limitations to deal with edds systems, because they are too onerous ordeectu
design limitations.

This work demonstrates how we interface hardwarepmments to Java applications. The Embedded
Parallel Operating System (EPOS) [Frohlich 200X4trets hardware devices as components which a well
defined interface. Using the Foreign Function lfstee of KESO Java Virtual Machine (JVM) [Thomn &t a
2010] we create the binding between these compsisemt their Java counterparts.

Our work focuses on application-driven, staticalbrfigured, and deeply embedded systems. Which
means, embedded systems designed to execute a apglication, where all the resources the apjpdinat
will need are known at design time. With this innohi we can optimize the system generation, for gxam



generating only the hardware components needechéyapplication. In this scenario features such as
reflection and dynamic class loading can be alswred from the JVM.

The contributions of this paper include a methodupport the development of class libraries which
elements are abstractions to access hardware dewviod experimental results exploring the use @ th
method to develop Java bindings for a Motion Edfiiomacomponent for H.264 video encoding.

The next sections of this paper are organizedignwhy: section 2 presents related works encompgssi
hardware/software interfacing for Java. We presentapproach to interface hardware components Jaitia
applications in section 3. Concepts of EPOS and®R&& presented as needed to support the undeargtand
of our proposal. We evaluate our approach in section terms of performance, portability, and meynor
footprint. Section 5 presents a Motion Estimatiamponent for H.264 encoding as an example of “real-
world” application. Our final considerations ar@gented in section 6.

2. RELATED WORK

Our work encompass the issue of supporting diraadWare access from Java and to provide this stppor
a well structured way while keeping in mind all tleguirements of the embedded systems scenario.

The Java programming language does not providesdheept ofpointer like C and C++ does. The
address ofeference variablgsused to access Java objects, is just known byake Virtual Machine that
handles all memory accesses. As major hardwareeeare mapped in memory addresses, direct aacess t
them is an issue to Java language. Foreign Funiiterface (FFI) is the approach used by Java esanme
this limitation since it allows Java to use consti@ns, such as C/C++ pointers, to direct accesdwae
devices. FFIs have also been used by Java platftrmeuse code written in other programming langgag
such as C and C++ and to embed JVMs into nativéicapipns allowing them to access Java functiopalit
[Liang 1999], [Korsholm and Jean 2007].

Java Native Interfac€INI) is the main Java FFI, which is usedlava Standard Editioplatform (JSE)
[Liang 1999]. In JNI, the binding of native code psrformed during runtime. Which means, the JVM
searches and load into itself the implementatiomethods marked amtive Usually the implementation of
native methods is stored in a dynamic library. Tégéarch and loading mechanism increase the need for
runtime memory and increase the JVM size. Becatideag they are avoided in embedded systems.

The Java Micro Edition(JME) platform uses a lightweight FFI, call&dNative InterfaceKNI [Sun
Microsystem 2002]. KNI does not dynamically loadtivea methods into JVM, avoiding the memory
overhead of JNI. In KNI the binding between Javd aative code is performed statically, during cdmpi
time. However the design of KNI imposes some litiotas. KNI forbids creating new Java objects (other
than strings) from the native code. Besides timKNI the only native methods that can be invokesltae
ones pre-built into the JVM. There is no Java-leA®l to invoke others native methods. By consegeagitc
is difficult to create new hardware drivers usinyIK

KESO FFlI, used in this work, focuses on embeddatiesys. Like KNI, KESO FFI does not perform
dynamically loading of native methods. But unlikBliKKESO FFI provides for the programmer a Javalev
API to create new native code bindings. Also ther@o problem of native code calling Java codeesinc
KESO and KESO FFI generate C code.

3. INTERFACING HARDWARE DEVICES WITH VERY HIGH LEVEL
LANGUAGES

One of the main issues of languages that aim tadeel for embedded systems development is to access
hardware devices. This is highly desirable, sintdbedded systems often use hardware devices tadhter
with the environment where they are inserted on. @aposal to interface very high level languagéth w
hardware devices is based on exporting these detacine API of the language. The hardware dewizdse
exported have a well defined interface, using hhedware mediatoiconcept of EPOS. We have used the
Foreign Function Interface of KESO JVM in orderetxport EPOS mediators to Java. This section explain
how we have abstracted hardware components to ée lmg embedded Java applications. The approach



utilization is exemplified by abstracting to JavdJaiversal Asynchronous Receiver Transmitter (UAI
hardware device.

EPOS uses the conceptladrdware mediator in order to abstract specificities from differerartiware
devicesHardware mediatorsustain an interface contract between system atisina (e.g. threads) and t
machine allowing for these abstractions mac-independencdgPolpeta and Frohlich 20C. The generation
of the mediator implementation for a specific maehis performd at compile time. Using static m-
programming techniques and function’s inlining ésgible to dissolve mediators among the abstrastioat
use it, which avoids time overhead in the use aliaters

KESO provides a Foreign Function Interface (Fbr interfacing with C and C++ code. KESO FFl u
a static approach like Sun’s KNI (see seci2), binding Java and native code at compile timetHemmore
KESO FFI provides a powerful API for specifying wpers generation. Adopting some concepts olect-
Oriented Programming (AOHKiczales et al. 199, using the KESO FFI API it is possible to “writpoint
cutsspecifying thgoin pointsof a Java program (such as Java methods and gldlsaesvill be affected b
the givenadvices The advice in tls case, is the code that represéimsnative method implementation. T
aspectghat group togethgroint cut: andadvicesare represented in KESO FFI API b'\Weaveletabstract
class. Extending thgVeaveletclass and implementing some of its methocis possible to specify whic
Java classes and methods should be affected act whiive code should be genera

We have used KESO FFI to create a binding for &0S mediator that should be accessed by .
providing Java with hardware componerThe approach used is shown in figureThe Java class, whic
represents the Java counterpart for the hardwacdkaioe been abstracted, specifies methods sigreaturt
no method implementation (since they represenwv@atiethods). Then, a weavelet ¢ of KESO FFI is
used to specify the implementation for each nathethod. More specifically, the weavelet class S
which methods of the Java class we would like tergept (pointcuts) and the respective code thatlghbe
generated (advices). Bng the translation of Java bytecode into C, tfeSK compiler “wove” the methot
of the Java class with the advices specified bywbavelet, generating ttbinding cod which performs the
interface between the Java class and the EPOS aardneditor.

call HW Mediator: :@

<<specifies>> > -
/
Weavelet call HW Mediat@
\ - /
<< Uses>=>

KESO Compiler

<<generates>>

Binding Code

QEPOS HW Med iatoD

Hardware Device )

Figure 1. Accessing hardware devices.

The implementation of each native method, specifidtie weavelet, is basically a call to each meétbbthe
EPOS mediator been interfaced. On the implememtatfche methocaffectMetho( (Weaveletinterface) is



possible to specify a pattern to be matched whégrasents, for example, a method signature. Itsis a
possible to specify which code should be generateeh the KESO compiler finds the match specified by
the pattern. Figure 2 shows the binding specifieafor a virtual method calleghl which has one parameter
of the type character and have no retwoid type). TheeposHWMediatois a field of the binding class
which points to the actual hardware mediator of EP@dding fields to binding classes is possible by
implementing theddFieldsmethod ofWeaveleinterface.

public boolean affectMethod(IMClass clazz, IMMethod method, Coder coder)
throws CompileException {
Y/
if (method.termed('m1(C)V")) {
coder.addIn("obj0— >eposHWMediator—>m1(c1);");
return true;

}
/-

}

Figure 2. Specifying the binding code.

EPOS objects allocated by a binding object, sudpasHWMediatgrwhich is allocated when one catisw
on the Java side are deallocated orfithadizer method of such Java class. As is possible to etaministic
algorithms for the KESO garbage collector thera gaiarantee that finalizers are called.

The KESO FFl is integrated with the KESO compiley during the compilation of Java bytecode to C,
instances of weavelets classes are created and fosegenerating the native code. Although the code
specified by a weavelet is not subject of the statialysis performed by the KESO compiler, KESO $tHl
presents some interesting advantages, which lgd use it. For example, if the KESO compiler idées
that the application code does not use some natiethod it does not generate the native code fdr tha
method, reducing the memory needs (which is higlirdlele in an embedded system scenario).

We wrote a small application using the UART hardevarediator to illustrate our proposal of abstragtin
hardware devices to embedded Java. The applicatimwn by figure 3, uses the UART to write chanacte
on a serial device. The JauAARTclass is the Java counterpart abstraction foJBWBRT hardware mediator
of EPOS and has only native methods without anyl@mpntation. Using the approach shown by figure 2,
we have created a weavelet class nathaBT_ Weavelawhich specifies the implementation for ed¢ART
method.

package test;
import keso.core.Task;

public class UART _Test extends Task {
public void launch() {
UART serial;
serial = new UART(19200, 8, 0, 1, 0);
for(int i =0; i < 10000;i++) {
serial . put(’M’);
}
1
}

Figure 3. UART example.



4. EVALUATION

We evaluate our proposal of interfacing hardwareiads with Java, described in section 3, in terhs o
performance, portability, and memory footprint. dars experiments, we have used the UART example
mentioned in section 3 and a component for Motistinkation in H.264 video encoding.

The C/C++ code, generated by KESO compiler and BB5®& FFI while using our approach, was
compiled into native code using GCC (gcc and gfie UART application was evaluated in 1A32 and
PowerPC32 (PPC32) architectures. The platform fmeld\32 was the NANO-LX-800 board, a PC platform
based on the Geode processor. The platform usdefG32 was the ML310 from Xilinx which contains the
Power PC 405 32-bit processor. The Motion Estinmfipplication was evaluated in the 1A32 architeetur
on a PC using the Intel Quad Core Q9550 processor.

This section describes the results for the UART iated Section 5 describes in details the Motion
Estimation component as the obtained results for it

4.1 Performance

A binding to interface very high level languagesl éardware devices (i.e. FFI) should interfereteas as
possible on the original response time of suchadsvtherwise its utilization can become impracttita
order to evaluate the proposal of section 3, weelragasured the response time of the device bedyrada
while using it directly (e.g. by a C++ applicatiprgnd using it through ours Java bindings. We call
DeviceTimehe original response time which is composed kytithe of the EPOS mediator plus the time of
the physical device. ThEotalTimeadds to théeviceTimehe response time of the native method, including
the call to the method and the method'’s returnhWese concepts in mind, the time overhead gestbiat

a FFI can be described by equation 1.

FFIOverhead(%) = (1 - m) x 100 (1)

TotalTime

We have measured the total and the device timkeofJIART's put method. The method was called 10
thousand times in an application’s execution, amal dpplication was executed 30 times. We have used
EPOS'stime stamp clocko compute the time. The obtained overhead, aguptd equation 1 corresponds
to less than 0.04% of the total execution time.

In order to estimate the relevance of the overhvadue, we reproduce the UART experiment using Java
Standard Edition which uses the Java Native Interfaas FFI. We have used thBXTX
(http://rxtx.gbang.org/) library which implementsetJava Communications APused for communicating
with serial devices. The functiogettimeofthedaywas used to compute the device time, and the Java
System.nanoTimmethod was used to compute the total time. Tab#hdws the obtained values as the
values obtained while using our proposal.

The JNI based application presents an overhead.586 Wwhich is about 38 times greater than the
overhead obtained using your approach. Considenmgpplication that must send a byte everyu42dnd
considering that a UART takes 41isto sent a byte (bound rate of 19200), an overlvddd5% (6.25u9
would compromise the data transmission, leadirdgtdline misses in a real-time application.

Table 1. FFI time overhead.

FFI Total (us) UART (us) FFI Overhead (%)
Proposal 517.74 517.54 0.04
JSE 8364683.74 8238695.07 15




4.2 Portability

Our Java bindings support to kinds of portabilghatform portability, and software/hardware portitpi

Since a Java binding developed using our appraglgton the concept of EPOS hardware mediators and
the latter provides a machine-independent interfdeeformer can potentially exists in all architees and
machines for which EPOS has a port.

By software/hardware portability we meant that $hene Java binding can be used either for a software
or hardware implementation of the component beeapp&d. This is possible due to the conceptydirid
componentsealized by EPOS, where the component presereesaime interfaces either in its software or
hardware implementation [Marcondes and Frohliche200

4.3 Memory footprint

The binding code to wrap a hardware mediator shaulgct as less as possible on the code and data
memory needed by the application to execute. Ierotd estimate the memory overhead generated by our
approach, we have measured, usBigU size the footprint of the binary image containing thieole system

and the footprint specifically related for creatigava binding.

Table 2 shows the obtained values for the UART etamwhich was developed for IA32 and Power
PC32 architectures. The whole system size incluttiegapplication, KESO JVM, and EPOS runtime has
less than 33KB in both architectures, a suitableeséor many embedded hardware platforms. The bandi
for UART takes 92 bytes from the total image sipe fA32 architecture and 112 bytes for PPC32
architecture. It corresponds, respectively, to G%2thd 0.34% of the total image size.

Table 2. Total footprint.

Section IA32 (byte) PPC32 (byte)
text 28645 30504

data 1180 1198

bss 1264 840

total 31089 32542

5. REAL-WORLD APPLICATION

In order to evaluate our proposal in a “real-waalgplication” we have develop a Java component which
computes Motion Estimation (ME) for H.264 video eding. Motion Estimation is used to explore the
similarity between neighboring frames in a videqusnce, thus enabling them to be differentiallyosied,
improving the compress ratio of the generatedrieish [Wiegand et al. 2003]. ME is an significamatgst for
H.264 encoding, since it consumes around 90% ofdta time of the encoding process [Li et al. 2004
order to improve the performance of ME, our componeses a data partitioning strategy where theanoti
estimation for each partition of the picture isfpamed in parallel by &/orkermodule which executed in a
specific functional unit, such as a core of a roolte processor. There is alsoCaordinator module,
responsible to define the picture partition fortedéorkerand to provide them with pictures to be processed.
The Coordinatoris also responsible to gather results generataffdmkers(motion cost and motion vectors)
and to delivery these results back to the encddgure 4 illustrates the interaction betwegwpordinatorand
Workersmodules.
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Figure 4. Interaction between Coordinator and Workers

Our component is calleDistributed Motion Estimation Compon: (DMEC), since the computation of V
is performed in parallel bWorker: modules. However, this complexity is hidden frora thava applicatio
(e.g. H.264 encoder), which only sees a compor@mE computation performed bymatchmethod. The
DMEC is implemented as a C++ component and it joeted to Java using the strey presented at section
3, where is developed a Java binding for each objeeh absticted.

Currently DMEC is implemented by software compoeemthereCoordinatorand Workersare threads
running on distinct cores of a liticore processor. In spite ofah) DMEC can be implemented by hardw
components preserving the same interfaces availatilee software version. We can achieve this lipg
the concept of EPOS hybrid compone[Marcondes and Fréhlich 20Q9h that case our Java wrappers ¢
reman the same. In a hardware implementation scenCoordinator and Worker: are IPs of a
Multiprocessor System-o@hip (MPSoC) and the communication between thepeiformed by the c¢-chip
interconnection, such the ones describe[Javaid et al. 2010], [gpovici and Jerraya 20C.

We have written a Java application to use our DMi&@ponent. From the ME point of view, t
developed application plays the role of the H.26dogler: it provides DMEC with the frames to be gsseC
and it uses the results dedred by the component checking if they are coriFigure 5 shows the main
method of the application. The DMEC is used asualu¥ava objec

public class DmecApp extends Task {
public void launch() {
DebugOut.printin("DMEC_APP._is_alive!");
int width = 1920; int height = 1088; int maxRefPic = 1;
PictureMotionEstimator pme = new PictureMotionEstimator(width, height, maxRefPic);

Picture currentPicture = TestSupport.createPicture(width, height);
Picture[] list0 = new Picture[2];
for (int i =0; i < list0.length; i++) {

list0 [i] = TestSupport.createPicture(width, height);
PictureMotionCounterpart pmc = pme.match(currentPicture, list0);

TestSupport.testPMC(pmc, width, height, currentPicture, list0 );
DebugQOut.printin("done:_OK?);

Figure 5.DMEC Java applicatian



6. CONCLUSIONS

In this paper, we have introduced a method to fiater hardware components with Java applications for
embedded systems. Using the KESO FFI and EPOS evalde to abstract hardware components to Java
while respecting constrains imposed by embedde@sgs

We have evaluated our approach in terms of perfocmaportability, and memory usage. For an
application using the UART hardware mediator theegated time overhead is less than 0.04% of tta tot
execution time and our solution is 38 times fatttan Sun’s JNI. The memory footprint for such aqegiion
was of 33KB, including all runtime support, whichduitable for many embedded systems.

Using EPOS we can achieve portability to severadlWare platforms, and using the concept of hybrid
components we can use the same Java bindings fitheymponents implemented in hardware or software

In order to evaluate our approach in a real-wontgliaation we have written Java bindings for a
component which performs Motion Estimation for Hi26deo encoding.
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