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ABSTRACT 

In this paper we introduce a method to interface hardware components with embedded Java applications. Access to 
hardware devices is an important requirement for embedded software since the embedded system must interact with the 
environment where it is inserted on. At the same time, the use of very high-level languages, such as Java, facilitates the 
development of embedded systems because they provide features such as object-orientation, automatic memory 
management, and memory protection. We have evaluated our method in terms of performance, portability, and memory 
footprint. We also have developed Java bindings for a component for motion estimation in H.264 video coding, 
demonstrating the usability of our approach in a real-world scenario.  
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1. INTRODUCTION 

Java implementations that have embedded systems as targets must provide developers with a way to control 
hardware devices. This is highly desirable since embedded system applications run close to the hardware in 
the sense that they use hardware devices such as sensors and actuators to interact with the environment, 
transmitters and receivers for communication, and timers for real time operations. At the same time, Java 
applications for embedded systems must fulfill all constraints of memory consumption, time, and energy, 
which could be present in such embedded systems. 

Foreign Function Interface (FFI) like the Java Native Interface is the mechanism used by Java platforms 
to access hardware devices and memory. In fact, several Java packages such as java.io, java.net and java.awt 
are implemented using FFI facilities [Liang 1999]. However, as we will explain in section 2, the main FFIs 
provided by Java have limitations to deal with embedded systems, because they are too onerous or because of 
design limitations. 

This work demonstrates how we interface hardware components to Java applications. The Embedded 
Parallel Operating System (EPOS) [Fröhlich 2001] abstracts hardware devices as components which a well-
defined interface. Using the Foreign Function Interface of KESO Java Virtual Machine (JVM) [Thomn et al. 
2010] we create the binding between these components and their Java counterparts.  

Our work focuses on application-driven, statically-configured, and deeply embedded systems. Which 
means, embedded systems designed to execute a single application, where all the resources the application 
will need are known at design time. With this in mind, we can optimize the system generation, for example 



generating only the hardware components needed by the application. In this scenario features such as 
reflection and dynamic class loading can be also removed from the JVM. 

The contributions of this paper include a method to support the development of class libraries which 
elements are abstractions to access hardware devices, and experimental results exploring the use of this 
method to develop Java bindings for a Motion Estimation component for H.264 video encoding. 

The next sections of this paper are organized in this way: section 2 presents related works encompassing 
hardware/software interfacing for Java. We present our approach to interface hardware components with Java 
applications in section 3. Concepts of EPOS and KESO are presented as needed to support the understanding 
of our proposal. We evaluate our approach in section 4 in terms of performance, portability, and memory 
footprint. Section 5 presents a Motion Estimation component for H.264 encoding as an example of “real-
world” application. Our final considerations are presented in section 6. 

2. RELATED WORK 

Our work encompass the issue of supporting direct hardware access from Java and to provide this support in 
a well structured way while keeping in mind all the requirements of the embedded systems scenario. 

The Java programming language does not provides the concept of pointer like C and C++ does. The 
address of reference variables, used to access Java objects, is just known by the Java Virtual Machine that 
handles all memory accesses. As major hardware devices are mapped in memory addresses, direct access to 
them is an issue to Java language. Foreign Function Interface (FFI) is the approach used by Java to overcome 
this limitation since it allows Java to use constructions, such as C/C++ pointers, to direct access hardware 
devices. FFIs have also been used by Java platforms to reuse code written in other programming languages 
such as C and C++ and to embed JVMs into native applications allowing them to access Java functionality 
[Liang 1999], [Korsholm and Jean 2007]. 

Java Native Interface (JNI) is the main Java FFI, which is used in Java Standard Edition platform (JSE) 
[Liang 1999]. In JNI, the binding of native code is performed during runtime. Which means, the JVM 
searches and load into itself the implementation of methods marked as native. Usually the implementation of 
native methods is stored in a dynamic library. This search and loading mechanism increase the need for 
runtime memory and increase the JVM size. Because of that, they are avoided in embedded systems. 

The Java Micro Edition (JME) platform uses a lightweight FFI, called K Native Interface KNI [Sun 
Microsystem 2002]. KNI does not dynamically load native methods into JVM, avoiding the memory 
overhead of JNI. In KNI the binding between Java and native code is performed statically, during compile 
time. However the design of KNI imposes some limitations. KNI forbids creating new Java objects (other 
than strings) from the native code. Besides that, in KNI the only native methods that can be invoked are the 
ones pre-built into the JVM. There is no Java-level API to invoke others native methods. By consequence, it 
is difficult to create new hardware drivers using KNI. 

KESO FFI, used in this work, focuses on embedded systems. Like KNI, KESO FFI does not perform 
dynamically loading of native methods. But unlike KNI, KESO FFI provides for the programmer a Java-level 
API to create new native code bindings. Also there is no problem of native code calling Java code since 
KESO and KESO FFI generate C code. 

3. INTERFACING HARDWARE DEVICES WITH VERY HIGH LEVEL 
LANGUAGES 

One of the main issues of languages that aim to be used for embedded systems development is to access 
hardware devices. This is highly desirable, since embedded systems often use hardware devices to interact 
with the environment where they are inserted on. Our proposal to interface very high level languages with 
hardware devices is based on exporting these devices to the API of the language. The hardware devices to be 
exported have a well defined interface, using the hardware mediator concept of EPOS. We have used the 
Foreign Function Interface of KESO JVM in order to export EPOS mediators to Java. This section explains 
how we have abstracted hardware components to be used by embedded Java applications. The approach 
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Figure 1. Accessing hardware devices. 
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possible to specify a pattern to be matched which represents, for example, a method signature. It is also 
possible to specify which code should be generated when the KESO compiler finds the match specified by 
the pattern. Figure 2 shows the binding specification for a virtual method called m1 which has one parameter 
of the type character and have no return (void type). The eposHWMediator is a field of the binding class 
which points to the actual hardware mediator of EPOS. Adding fields to binding classes is possible by 
implementing the addFields method of Weavelet interface. 

 

 

Figure 2. Specifying the binding code. 

EPOS objects allocated by a binding object, such as eposHWMediator, which is allocated when one calls new 
on the Java side are deallocated on the finalizer method of such Java class. As is possible to use deterministic 
algorithms for the KESO garbage collector there is a guarantee that finalizers are called. 

The KESO FFI is integrated with the KESO compiler so, during the compilation of Java bytecode to C, 
instances of weavelets classes are created and used for generating the native code. Although the code 
specified by a weavelet is not subject of the static analysis performed by the KESO compiler, KESO FFI still 
presents some interesting advantages, which led us to use it. For example, if the KESO compiler identifies 
that the application code does not use some native method it does not generate the native code for that 
method, reducing the memory needs (which is high desirable in an embedded system scenario). 

We wrote a small application using the UART hardware mediator to illustrate our proposal of abstracting 
hardware devices to embedded Java. The application, shown by figure 3, uses the UART to write characters 
on a serial device. The Java UART class is the Java counterpart abstraction for the UART hardware mediator 
of EPOS and has only native methods without any implementation. Using the approach shown by figure 2, 
we have created a weavelet class named UART_Weavelet which specifies the implementation for each UART 
method. 

 

 

Figure 3. UART example. 

 



4. EVALUATION 

We evaluate our proposal of interfacing hardware devices with Java, described in section 3, in terms of 
performance, portability, and memory footprint. In ours experiments, we have used the UART example 
mentioned in section 3 and a component for Motion Estimation in H.264 video encoding.  

The C/C++ code, generated by KESO compiler and by KESO FFI while using our approach, was 
compiled into native code using GCC (gcc and g++). The UART application was evaluated in IA32 and 
PowerPC32 (PPC32) architectures. The platform used for IA32 was the NANO-LX-800 board, a PC platform 
based on the Geode processor. The platform used for PPC32 was the ML310 from Xilinx which contains the 
Power PC 405 32-bit processor. The Motion Estimation Application was evaluated in the IA32 architecture, 
on a PC using the Intel Quad Core Q9550 processor. 

This section describes the results for the UART mediator. Section 5 describes in details the Motion 
Estimation component as the obtained results for it. 

 

4.1 Performance 

A binding to interface very high level languages and hardware devices (i.e. FFI) should interferer as less as 
possible on the original response time of such devices otherwise its utilization can become impractical. In 
order to evaluate the proposal of section 3, we have measured the response time of the device been analyzed 
while using it directly (e.g. by a C++ application), and using it through ours Java bindings. We call 
DeviceTime the original response time which is composed by the time of the EPOS mediator plus the time of 
the physical device. The TotalTime adds to the DeviceTime the response time of the native method, including 
the call to the method and the method’s return. With these concepts in mind, the time overhead generated by 
a FFI can be described by equation 1.  
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We have measured the total and the device time of the UART’s put method. The method was called 10 

thousand times in an application’s execution, and the application was executed 30 times. We have used 
EPOS’s time stamp clock to compute the time. The obtained overhead, according to equation 1 corresponds 
to less than 0.04% of the total execution time. 

In order to estimate the relevance of the overhead value, we reproduce the UART experiment using Java 
Standard Edition which uses the Java Native Interface as FFI. We have used the RXTX 
(http://rxtx.qbang.org/) library which implements the Java Communications API, used for communicating 
with serial devices. The function gettimeoftheday was used to compute the device time, and the Java 
System.nanoTime method was used to compute the total time. Table 1 shows the obtained values as the 
values obtained while using our proposal. 

The JNI based application presents an overhead of 1.5% which is about 38 times greater than the 
overhead obtained using your approach. Considering an application that must send a byte every 420µs and 
considering that a UART takes 417 µs to sent a byte (bound rate of 19200), an overhead of 1.5% (6.25 µs) 
would compromise the data transmission, leading to deadline misses in a real-time application. 

 

Table 1. FFI time overhead. 

FFI Total (µs) UART (µs) FFI Overhead (%) 
Proposal 517.74 517.54 0.04 
JSE 8364683.74 8238695.07 1.5 

 
 



4.2 Portability 

Our Java bindings support to kinds of portability: platform portability, and software/hardware portability. 
Since a Java binding developed using our approach rely on the concept of EPOS hardware mediators and 

the latter provides a machine-independent interface, the former can potentially exists in all architectures and 
machines for which EPOS has a port. 

By software/hardware portability we meant that the same Java binding can be used either for a software 
or hardware implementation of the component been wrapped. This is possible due to the concept of hybrid 
components realized by EPOS, where the component preserves the same interfaces either in its software or 
hardware implementation [Marcondes and Fröhlich 2009]. 

 

4.3 Memory footprint 

The binding code to wrap a hardware mediator should impact as less as possible on the code and data 
memory needed by the application to execute. In order to estimate the memory overhead generated by our 
approach, we have measured, using GNU size, the footprint of the binary image containing the whole system 
and the footprint specifically related for creating a Java binding. 

Table 2 shows the obtained values for the UART example, which was developed for IA32 and Power 
PC32 architectures. The whole system size including the application, KESO JVM, and EPOS runtime has 
less than 33KB in both architectures, a suitable value for many embedded hardware platforms. The binding 
for UART takes 92 bytes from the total image size for IA32 architecture and 112 bytes for PPC32 
architecture. It corresponds, respectively, to 0.29% and 0.34% of the total image size. 

 

Table 2. Total footprint. 

Section IA32 (byte) PPC32 (byte) 
text 28645 30504 
data 
bss 
total 

1180 
1264 
31089 

1198 
840 
32542 

 

5. REAL-WORLD APPLICATION 

In order to evaluate our proposal in a “real-world application” we have develop a Java component which 
computes Motion Estimation (ME) for H.264 video encoding. Motion Estimation is used to explore the 
similarity between neighboring frames in a video sequence, thus enabling them to be differentially encoded, 
improving the compress ratio of the generated bitstream [Wiegand et al. 2003]. ME is an significant stage for 
H.264 encoding, since it consumes around 90% of the total time of the encoding process [Li et al. 2004]. In 
order to improve the performance of ME, our component uses a data partitioning strategy where the motion 
estimation for each partition of the picture is performed in parallel by a Worker module which executed in a 
specific functional unit, such as a core of a multicore processor. There is also a Coordinator module, 
responsible to define the picture partition for each Worker and to provide them with pictures to be processed. 
The Coordinator is also responsible to gather results generated by Workers (motion cost and motion vectors) 
and to delivery these results back to the encoder. Figure 4 illustrates the interaction between Coordinator and 
Workers modules. 
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Figure 4. Interaction between Coordinator and Workers. 
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Figure 5. DMEC Java application. 
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6. CONCLUSIONS 

In this paper, we have introduced a method to interface hardware components with Java applications for 
embedded systems. Using the KESO FFI and EPOS we are able to abstract hardware components to Java 
while respecting constrains imposed by embedded systems. 

We have evaluated our approach in terms of performance, portability, and memory usage. For an 
application using the UART hardware mediator the generated time overhead is less than 0.04% of the total 
execution time and our solution is 38 times faster than Sun’s JNI. The memory footprint for such application 
was of 33KB, including all runtime support, which is suitable for many embedded systems.  

Using EPOS we can achieve portability to several hardware platforms, and using the concept of hybrid 
components we can use the same Java bindings either for components implemented in hardware or software. 

In order to evaluate our approach in a real-world application we have written Java bindings for a 
component which performs Motion Estimation for H.264 video encoding. 
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