
ABSTRACTING HARDWARE DEVICES TO EMBEDDED
JAVA APPLICATIONS

Mateus Krepsky Ludwich
Laboratory for Software and Hardware Integration – LISHA

Federal University of Santa Catarina – UFSC
P.O.Box 476, 880400900 - Florianópolis - SC – Brazil

mateus@lisha.ufsc.br

Antônio Augusto Fröhlich
Laboratory for Software and Hardware Integration – LISHA

Federal University of Santa Catarina – UFSC
P.O.Box 476, 880400900 - Florianópolis - SC – Brazil

guto@lisha.ufsc.br

ABSTRACT

In this paper we introduce a method to interface hardware components with embedded Java applications. Access to
hardware devices is an important requirement for embedded software since the embedded system must interact with the
environment where it is inserted on. At the same time, the use of very high-level languages, such as Java, facilitates the
development of embedded systems because they provide features such as object-orientation, automatic memory
management, and memory protection. We have evaluated our method in terms of performance, portability, and memory
footprint. We also have developed Java bindings for a component for motion estimation in H.264 video coding,
demonstrating the usability of our approach in a real-world scenario.

KEYWORDS

Java, Embedded Systems, Foreign Function Interface.

1. INTRODUCTION

Java implementations that have embedded systems as targets must provide developers with a way to control
hardware devices. This is highly desirable since embedded system applications run close to the hardware in
the sense that they use hardware devices such as sensors and actuators to interact with the environment,
transmitters and receivers for communication, and timers for real time operations. At the same time, Java
applications for embedded systems must fulfill all constraints of memory consumption, time, and energy,
which could be present in such embedded systems.

Foreign Function Interface (FFI) like the Java Native Interface is the mechanism used by Java platforms
to access hardware devices and memory. In fact, several Java packages such as java.io, java.net and java.awt
are implemented using FFI facilities [Liang 1999]. However, as we will explain in section 2, the main FFIs
provided by Java have limitations to deal with embedded systems, because they are too onerous or because of
design limitations.

This work demonstrates how we interface hardware components to Java applications. The Embedded
Parallel Operating System (EPOS) [Fröhlich 2001] abstracts hardware devices as components which a well-
defined interface. Using the Foreign Function Interface of KESO Java Virtual Machine (JVM) [Thomn et al.
2010] we create the binding between these components and their Java counterparts.

Our work focuses on application-driven, statically-configured, and deeply embedded systems. Which
means, embedded systems designed to execute a single application, where all the resources the application
will need are known at design time. With this in mind, we can optimize the system generation, for example

generating only the hardware components needed by the application. In this scenario features such as
reflection and dynamic class loading can be also removed from the JVM.

The contributions of this paper include a method to support the development of class libraries which
elements are abstractions to access hardware devices, and experimental results exploring the use of this
method to develop Java bindings for a Motion Estimation component for H.264 video encoding.

The next sections of this paper are organized in this way: section 2 presents related works encompassing
hardware/software interfacing for Java. We present our approach to interface hardware components with Java
applications in section 3. Concepts of EPOS and KESO are presented as needed to support the understanding
of our proposal. We evaluate our approach in section 4 in terms of performance, portability, and memory
footprint. Section 5 presents a Motion Estimation component for H.264 encoding as an example of “real-
world” application. Our final considerations are presented in section 6.

2. RELATED WORK

Our work encompass the issue of supporting direct hardware access from Java and to provide this support in
a well structured way while keeping in mind all the requirements of the embedded systems scenario.

The Java programming language does not provides the concept of pointer like C and C++ does. The
address of reference variables, used to access Java objects, is just known by the Java Virtual Machine that
handles all memory accesses. As major hardware devices are mapped in memory addresses, direct access to
them is an issue to Java language. Foreign Function Interface (FFI) is the approach used by Java to overcome
this limitation since it allows Java to use constructions, such as C/C++ pointers, to direct access hardware
devices. FFIs have also been used by Java platforms to reuse code written in other programming languages
such as C and C++ and to embed JVMs into native applications allowing them to access Java functionality
[Liang 1999], [Korsholm and Jean 2007].

Java Native Interface (JNI) is the main Java FFI, which is used in Java Standard Edition platform (JSE)
[Liang 1999]. In JNI, the binding of native code is performed during runtime. Which means, the JVM
searches and load into itself the implementation of methods marked as native. Usually the implementation of
native methods is stored in a dynamic library. This search and loading mechanism increase the need for
runtime memory and increase the JVM size. Because of that, they are avoided in embedded systems.

The Java Micro Edition (JME) platform uses a lightweight FFI, called K Native Interface KNI [Sun
Microsystem 2002]. KNI does not dynamically load native methods into JVM, avoiding the memory
overhead of JNI. In KNI the binding between Java and native code is performed statically, during compile
time. However the design of KNI imposes some limitations. KNI forbids creating new Java objects (other
than strings) from the native code. Besides that, in KNI the only native methods that can be invoked are the
ones pre-built into the JVM. There is no Java-level API to invoke others native methods. By consequence, it
is difficult to create new hardware drivers using KNI.

KESO FFI, used in this work, focuses on embedded systems. Like KNI, KESO FFI does not perform
dynamically loading of native methods. But unlike KNI, KESO FFI provides for the programmer a Java-level
API to create new native code bindings. Also there is no problem of native code calling Java code since
KESO and KESO FFI generate C code.

3. INTERFACING HARDWARE DEVICES WITH VERY HIGH LEVEL
LANGUAGES

One of the main issues of languages that aim to be used for embedded systems development is to access
hardware devices. This is highly desirable, since embedded systems often use hardware devices to interact
with the environment where they are inserted on. Our proposal to interface very high level languages with
hardware devices is based on exporting these devices to the API of the language. The hardware devices to be
exported have a well defined interface, using the hardware mediator concept of EPOS. We have used the
Foreign Function Interface of KESO JVM in order to export EPOS mediators to Java. This section explains
how we have abstracted hardware components to be used by embedded Java applications. The approach

utilization is exemplified by abstracting to Java a Universal Asynchronous Receiver Transmitter (UART)
hardware device.

EPOS uses the concept of hardware mediators
devices. Hardware mediators sustain an interface contract between system abstractions (e.g. threads) and the
machine allowing for these abstractions machine
of the mediator implementation for a specific machine is performe
programming techniques and function’s inlining is possible to dissolve mediators among the abstractions that
use it, which avoids time overhead in the use of mediators.

KESO provides a Foreign Function Interface (FFI) f
a static approach like Sun’s KNI (see section
KESO FFI provides a powerful API for specifying wrappers generation. Adopting some concepts of Asp
Oriented Programming (AOP) [Kiczales et al. 1997]
cuts specifying the join points of a Java program (such as Java methods and classes) that will be affected by
the given advices. The advice in thi
aspects that group together point cuts
class. Extending the Weavelet class and implementing some of its methods it
Java classes and methods should be affected and which native code should be generated.

We have used KESO FFI to create a binding for each EPOS mediator that should be accessed by Java,
providing Java with hardware components.
represents the Java counterpart for the hardware mediator been abstracted, specifies methods signatures but
no method implementation (since they represent native methods). Then, a weavelet class
used to specify the implementation for each native method. More specifically, the weavelet class specifies
which methods of the Java class we would like to intercept (pointcuts) and the respective code that should be
generated (advices). During the translation of Java bytecode into C, the KESO compiler “wove” the methods
of the Java class with the advices specified by the weavelet, generating the
interface between the Java class and the EPOS hardware media

The implementation of each native method, specified in the weavelet, is basically a call to each method of the
EPOS mediator been interfaced. On the implementation of the method

utilization is exemplified by abstracting to Java a Universal Asynchronous Receiver Transmitter (UART)

hardware mediators in order to abstract specificities from different hardware
sustain an interface contract between system abstractions (e.g. threads) and the

machine allowing for these abstractions machine-independence. [Polpeta and Fröhlich 2004]
of the mediator implementation for a specific machine is performed at compile time. Using static meta
programming techniques and function’s inlining is possible to dissolve mediators among the abstractions that
use it, which avoids time overhead in the use of mediators.

KESO provides a Foreign Function Interface (FFI) for interfacing with C and C++ code. KESO FFI uses
a static approach like Sun’s KNI (see section 2), binding Java and native code at compile time. Furthermore
KESO FFI provides a powerful API for specifying wrappers generation. Adopting some concepts of Asp

[Kiczales et al. 1997], using the KESO FFI API it is possible to “write”
of a Java program (such as Java methods and classes) that will be affected by

. The advice in this case, is the code that represents the native method implementation. The
point cuts and advices are represented in KESO FFI API by a

class and implementing some of its methods it is possible to specify which
Java classes and methods should be affected and which native code should be generated.

We have used KESO FFI to create a binding for each EPOS mediator that should be accessed by Java,
providing Java with hardware components. The approach used is shown in figure 1. The Java class, which
represents the Java counterpart for the hardware mediator been abstracted, specifies methods signatures but
no method implementation (since they represent native methods). Then, a weavelet class
used to specify the implementation for each native method. More specifically, the weavelet class specifies
which methods of the Java class we would like to intercept (pointcuts) and the respective code that should be

ring the translation of Java bytecode into C, the KESO compiler “wove” the methods
of the Java class with the advices specified by the weavelet, generating the binding code
interface between the Java class and the EPOS hardware mediator.

Figure 1. Accessing hardware devices.

The implementation of each native method, specified in the weavelet, is basically a call to each method of the
EPOS mediator been interfaced. On the implementation of the method affectMethod

utilization is exemplified by abstracting to Java a Universal Asynchronous Receiver Transmitter (UART)

in order to abstract specificities from different hardware
sustain an interface contract between system abstractions (e.g. threads) and the

[Polpeta and Fröhlich 2004]. The generation
d at compile time. Using static meta-

programming techniques and function’s inlining is possible to dissolve mediators among the abstractions that

or interfacing with C and C++ code. KESO FFI uses
), binding Java and native code at compile time. Furthermore

KESO FFI provides a powerful API for specifying wrappers generation. Adopting some concepts of Aspect-
, using the KESO FFI API it is possible to “write” point

of a Java program (such as Java methods and classes) that will be affected by
the native method implementation. The

are represented in KESO FFI API by a Weavelet abstract
is possible to specify which

Java classes and methods should be affected and which native code should be generated.
We have used KESO FFI to create a binding for each EPOS mediator that should be accessed by Java,

. The Java class, which
represents the Java counterpart for the hardware mediator been abstracted, specifies methods signatures but
no method implementation (since they represent native methods). Then, a weavelet class of KESO FFI is
used to specify the implementation for each native method. More specifically, the weavelet class specifies
which methods of the Java class we would like to intercept (pointcuts) and the respective code that should be

ring the translation of Java bytecode into C, the KESO compiler “wove” the methods
binding code which performs the

The implementation of each native method, specified in the weavelet, is basically a call to each method of the
affectMethod (Weavelet interface) is

possible to specify a pattern to be matched which represents, for example, a method signature. It is also
possible to specify which code should be generated when the KESO compiler finds the match specified by
the pattern. Figure 2 shows the binding specification for a virtual method called m1 which has one parameter
of the type character and have no return (void type). The eposHWMediator is a field of the binding class
which points to the actual hardware mediator of EPOS. Adding fields to binding classes is possible by
implementing the addFields method of Weavelet interface.

Figure 2. Specifying the binding code.

EPOS objects allocated by a binding object, such as eposHWMediator, which is allocated when one calls new
on the Java side are deallocated on the finalizer method of such Java class. As is possible to use deterministic
algorithms for the KESO garbage collector there is a guarantee that finalizers are called.

The KESO FFI is integrated with the KESO compiler so, during the compilation of Java bytecode to C,
instances of weavelets classes are created and used for generating the native code. Although the code
specified by a weavelet is not subject of the static analysis performed by the KESO compiler, KESO FFI still
presents some interesting advantages, which led us to use it. For example, if the KESO compiler identifies
that the application code does not use some native method it does not generate the native code for that
method, reducing the memory needs (which is high desirable in an embedded system scenario).

We wrote a small application using the UART hardware mediator to illustrate our proposal of abstracting
hardware devices to embedded Java. The application, shown by figure 3, uses the UART to write characters
on a serial device. The Java UART class is the Java counterpart abstraction for the UART hardware mediator
of EPOS and has only native methods without any implementation. Using the approach shown by figure 2,
we have created a weavelet class named UART_Weavelet which specifies the implementation for each UART
method.

Figure 3. UART example.

4. EVALUATION

We evaluate our proposal of interfacing hardware devices with Java, described in section 3, in terms of
performance, portability, and memory footprint. In ours experiments, we have used the UART example
mentioned in section 3 and a component for Motion Estimation in H.264 video encoding.

The C/C++ code, generated by KESO compiler and by KESO FFI while using our approach, was
compiled into native code using GCC (gcc and g++). The UART application was evaluated in IA32 and
PowerPC32 (PPC32) architectures. The platform used for IA32 was the NANO-LX-800 board, a PC platform
based on the Geode processor. The platform used for PPC32 was the ML310 from Xilinx which contains the
Power PC 405 32-bit processor. The Motion Estimation Application was evaluated in the IA32 architecture,
on a PC using the Intel Quad Core Q9550 processor.

This section describes the results for the UART mediator. Section 5 describes in details the Motion
Estimation component as the obtained results for it.

4.1 Performance

A binding to interface very high level languages and hardware devices (i.e. FFI) should interferer as less as
possible on the original response time of such devices otherwise its utilization can become impractical. In
order to evaluate the proposal of section 3, we have measured the response time of the device been analyzed
while using it directly (e.g. by a C++ application), and using it through ours Java bindings. We call
DeviceTime the original response time which is composed by the time of the EPOS mediator plus the time of
the physical device. The TotalTime adds to the DeviceTime the response time of the native method, including
the call to the method and the method’s return. With these concepts in mind, the time overhead generated by
a FFI can be described by equation 1.

����������	
%� �1 � ����������
��������� � � 100 (1)

We have measured the total and the device time of the UART’s put method. The method was called 10

thousand times in an application’s execution, and the application was executed 30 times. We have used
EPOS’s time stamp clock to compute the time. The obtained overhead, according to equation 1 corresponds
to less than 0.04% of the total execution time.

In order to estimate the relevance of the overhead value, we reproduce the UART experiment using Java
Standard Edition which uses the Java Native Interface as FFI. We have used the RXTX
(http://rxtx.qbang.org/) library which implements the Java Communications API, used for communicating
with serial devices. The function gettimeoftheday was used to compute the device time, and the Java
System.nanoTime method was used to compute the total time. Table 1 shows the obtained values as the
values obtained while using our proposal.

The JNI based application presents an overhead of 1.5% which is about 38 times greater than the
overhead obtained using your approach. Considering an application that must send a byte every 420µs and
considering that a UART takes 417 µs to sent a byte (bound rate of 19200), an overhead of 1.5% (6.25 µs)
would compromise the data transmission, leading to deadline misses in a real-time application.

Table 1. FFI time overhead.

FFI Total (µs) UART (µs) FFI Overhead (%)
Proposal 517.74 517.54 0.04
JSE 8364683.74 8238695.07 1.5

4.2 Portability

Our Java bindings support to kinds of portability: platform portability, and software/hardware portability.
Since a Java binding developed using our approach rely on the concept of EPOS hardware mediators and

the latter provides a machine-independent interface, the former can potentially exists in all architectures and
machines for which EPOS has a port.

By software/hardware portability we meant that the same Java binding can be used either for a software
or hardware implementation of the component been wrapped. This is possible due to the concept of hybrid
components realized by EPOS, where the component preserves the same interfaces either in its software or
hardware implementation [Marcondes and Fröhlich 2009].

4.3 Memory footprint

The binding code to wrap a hardware mediator should impact as less as possible on the code and data
memory needed by the application to execute. In order to estimate the memory overhead generated by our
approach, we have measured, using GNU size, the footprint of the binary image containing the whole system
and the footprint specifically related for creating a Java binding.

Table 2 shows the obtained values for the UART example, which was developed for IA32 and Power
PC32 architectures. The whole system size including the application, KESO JVM, and EPOS runtime has
less than 33KB in both architectures, a suitable value for many embedded hardware platforms. The binding
for UART takes 92 bytes from the total image size for IA32 architecture and 112 bytes for PPC32
architecture. It corresponds, respectively, to 0.29% and 0.34% of the total image size.

Table 2. Total footprint.

Section IA32 (byte) PPC32 (byte)
text 28645 30504
data
bss
total

1180
1264
31089

1198
840
32542

5. REAL-WORLD APPLICATION

In order to evaluate our proposal in a “real-world application” we have develop a Java component which
computes Motion Estimation (ME) for H.264 video encoding. Motion Estimation is used to explore the
similarity between neighboring frames in a video sequence, thus enabling them to be differentially encoded,
improving the compress ratio of the generated bitstream [Wiegand et al. 2003]. ME is an significant stage for
H.264 encoding, since it consumes around 90% of the total time of the encoding process [Li et al. 2004]. In
order to improve the performance of ME, our component uses a data partitioning strategy where the motion
estimation for each partition of the picture is performed in parallel by a Worker module which executed in a
specific functional unit, such as a core of a multicore processor. There is also a Coordinator module,
responsible to define the picture partition for each Worker and to provide them with pictures to be processed.
The Coordinator is also responsible to gather results generated by Workers (motion cost and motion vectors)
and to delivery these results back to the encoder. Figure 4 illustrates the interaction between Coordinator and
Workers modules.

Figure

Our component is called Distributed Motion Estimation Component
is performed in parallel by Workers
(e.g. H.264 encoder), which only sees a component for ME computation performed by a
DMEC is implemented as a C++ component and it is exported to Java using the strateg
3, where is developed a Java binding for each object been abstra

Currently DMEC is implemented by software components, where
running on distinct cores of a mu
components preserving the same interfaces available in the software version. We can achieve this by using
the concept of EPOS hybrid components
remain the same. In a hardware implementation scenario
Multiprocessor System-on-Chip (MPSoC) and the communication between them is performed by the on
interconnection, such the ones described by

We have written a Java application to use our DMEC component. From the ME point of view, the
developed application plays the role of the H.264 encoder: it provides DMEC with the frames to be processed
and it uses the results delivered by the component checking if they are correct.
method of the application. The DMEC is used as a usual Java object.

Figure 4. Interaction between Coordinator and Workers.

Distributed Motion Estimation Component (DMEC), since the computation of ME
Workers modules. However, this complexity is hidden from the Java application

(e.g. H.264 encoder), which only sees a component for ME computation performed by a
DMEC is implemented as a C++ component and it is exported to Java using the strateg
, where is developed a Java binding for each object been abstracted.

Currently DMEC is implemented by software components, where Coordinator and
running on distinct cores of a multicore processor. In spite of that, DMEC can be implemented by hardware
components preserving the same interfaces available in the software version. We can achieve this by using
the concept of EPOS hybrid components [Marcondes and Fröhlich 2009]. In that case our Java wrappers also

n the same. In a hardware implementation scenario Coordinator and Workers
Chip (MPSoC) and the communication between them is performed by the on

interconnection, such the ones described by [Javaid et al. 2010], [Popovici and Jerraya 2009]
We have written a Java application to use our DMEC component. From the ME point of view, the

developed application plays the role of the H.264 encoder: it provides DMEC with the frames to be processed
vered by the component checking if they are correct. Figure

method of the application. The DMEC is used as a usual Java object.

Figure 5. DMEC Java application.

(DMEC), since the computation of ME
modules. However, this complexity is hidden from the Java application

(e.g. H.264 encoder), which only sees a component for ME computation performed by a match method. The
DMEC is implemented as a C++ component and it is exported to Java using the strategy presented at section

and Workers are threads
at, DMEC can be implemented by hardware

components preserving the same interfaces available in the software version. We can achieve this by using
. In that case our Java wrappers also

Workers are IPs of a
Chip (MPSoC) and the communication between them is performed by the on-chip

opovici and Jerraya 2009].
We have written a Java application to use our DMEC component. From the ME point of view, the

developed application plays the role of the H.264 encoder: it provides DMEC with the frames to be processed
Figure 5 shows the main

6. CONCLUSIONS

In this paper, we have introduced a method to interface hardware components with Java applications for
embedded systems. Using the KESO FFI and EPOS we are able to abstract hardware components to Java
while respecting constrains imposed by embedded systems.

We have evaluated our approach in terms of performance, portability, and memory usage. For an
application using the UART hardware mediator the generated time overhead is less than 0.04% of the total
execution time and our solution is 38 times faster than Sun’s JNI. The memory footprint for such application
was of 33KB, including all runtime support, which is suitable for many embedded systems.

Using EPOS we can achieve portability to several hardware platforms, and using the concept of hybrid
components we can use the same Java bindings either for components implemented in hardware or software.

In order to evaluate our approach in a real-world application we have written Java bindings for a
component which performs Motion Estimation for H.264 video encoding.

REFERENCES

Thomm, I. et al, 2010. Keso: an open-source multi-jvm for deeply embedded systems. JTRES ’10: Proceedings of the 8th
International Workshop on Java Technologies for Real-Time and Embedded Systems.
New York, USA, pp 109–119.

Fröhlich, A. A., 2001. Application-Oriented Operating Systems. Number 17 in GMD Research Series. GMD -
Forschungszentrum Informationstechnik, Sankt Augustin.

Javaid, H. et al, 2010. Optimal synthesis of latency and throughput constrained pipelined mpsocs targeting streaming
applications. CODES/ISSS ’10: Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. New York, USA, pp. 75–84.

Kiczales, G. et al, 1997. Aspect-oriented programming. ECOOP. SpringerVerlag.
Korsholm, S. and Jean, P., 2007. The java legacy interface. JTRES ’07: Proceedings of the 5th international workshop on

Java technologies for real-time and embedded systems. New York, USA, pp. 187–195.
Li, X., Li, E., and Chen, Y.-K., 2004. Fast multi-frame motion estimation algorithm with adaptive search strategies in

h.264. volume 3, pp. iii – 369–72 vol.3.
Liang, S., 1999. The Java Native Interface - Programmer’s Guide and Specification. Addison-Wesley.
Marcondes, H. and Fröhlich, A. A., 2009. A Hybrid Hardware and Software Component Architecture for Embedded

System Design. International Embedded System Symposium. Langenargen, Germany, pp. 259–270.
Polpeta, F. V. and Fröhlich, A. A., 2004. Hardware mediators: a portability artifact for component-based systems.

Proceedings of the International Conference on Embedded and Ubiquitous Computing, volume 3207 of LNCS,
Aizu,Japan, pp. 271–280.

Popovici, K. and Jerraya, A., 2009. Flexible and abstract communication and interconnect modeling for mpsoc. ASP-
DAC ’09: Proceedings of the 2009 Asia and South Pacific Design Automation Conference.
Piscataway, USA, pp. 143–148.

Sun Microsystems, I., 2002. K Native Interface (KNI). Sun Microsystems, Inc.
Wiegand, T. et al, 2003. Overview of the h.264/avc video coding standard. Circuits and Systems for Video Technology,

IEEE Transactions on, 13(7):560–576.

