A Hybrid Hardware and Software Component Architecture for Embedded System Design

Hugo Marcondes and Antônio Augusto Fröhlich

Laboratory for Software and Hardware Integration Federal University of Santa Catarina PO Box 476 - Florianópolis - Brazil 88040-900 {hugom,guto}@lisha.ufsc.br

Abstract. Embedded systems are increasing in complexity, while several metrics such as time-to-market, reliability, safety and performance should be considered during the design of such systems. A componentbased design which enables the migration of its components between hardware and software can cope to achieve such metrics. To enable that, we define hybrid hardware and software components as a development artifact that can be deployed by different combinations of hardware and software elements. In this paper, we present an architecture for developing such components in order to construct a repository of components that can migrate between the hardware and software domains to meet the design system requirements.

1 Introduction

Several challenges arise on the design and implementation of current embedded systems. The applications themselves are becoming increasingly complex as the advances of the semiconductor industry enabled more sophisticated use of computational resources on a spread of market appliances. If by one way the applications are becoming more complex, on the other way the pressure of the market for rapid development of those systems makes the task of designing them a challenge.

The constraints imposed to such systems, in terms of functionality, performance, energy consumption, cost, reliability and time-to-market are getting tighter. Therefore, the task of designing such systems is becoming increasingly important and difficult at the same time [1]. Moreover, those systems could require an integrated hardware and software design that can be realized by a myriad of distinct computational architectures, ranging from simple 8-bit microcontrollers, digital signal processors (DSP), programmable logic devices (FPGA) to dedicated chips (ASIC) that provides the system functionality. In order to cope with these challenges, several methodologies were proposed by the hardware and software co-design community over the last decade. One approach to deal with these challenges is based on the concept of build a system based on the assembly of pre-validated components, like the *Platform-based design* [2].

A. Rettberg et al. (Eds.): IESS 2009, IFIP AICT 310, pp. 259–270, 2009.

[©] IFIP International Federation for Information Processing 2009

However, designing such reusable artifacts to meet the requirements of several distinct applications should be as challenging as well [3]. The partition of the system between hardware and software also plays a key role in the design process. Usually, this mapping of system functionality into hardware implementation and software implementation is done in the initial phases of the specification of the system, enabling the development and implementation of the hardware and software occur concurrently. This approach however, is not ideal, as a mistake on this beginning phase of the project could lead to a re-engineering of the system, which can sometimes be too costly.

Our proposal to deal with these challenges is to use refined engineering techniques to build a repository of components that are flexible enough to provide an interface that is free of implementation domain. In this scenario, embedded systems could be built on such components that can be migrated to hardware or software domains without major redesigns to the system, according to the requirements of the application. To enable the construction of those flexible components, a set of engineering techniques was used. Domain Engineering was used to identify a set of representative entities within a domain. Such entities are modeled using Object-oriented design, Family-based design, and Aspect-orientation. A framework models the composition rules of such components, using advance techniques such as generative programming to ensure a low overhead to the composed system.

The next section will present the related work on hardware and software codesign. In section 3 the proposed architecture of hybrid hardware and software components is introduced. Three components built with this architecture are described and evaluated in section 4, followed by the conclusion of this paper.

2 Related Work

Several methodologies propose the integration of tools and design phases of embedded systems, to promote a rapid-prototyping and design of such systems. Metropolis [4] proposes the use of a unified framework, based on a metamodel with formal semantics that developers can use to capture designs, and an environment to support the simulation, formal analysis and synthesis of complex electronic systems, providing an adequate support to the design chain.

The Ptolemy project [5] focuses on the modeling design of heterogeneous systems, as mostly modern embedded computing systems are heterogeneous in the sense of being composed of subsystems with very different characteristics among their interactions as synchronous or asynchronous calls, buffered or unbuffered, etc. To deal with such heterogeneity, Ptolemy proposes a model structure and semantic framework that support several models of computations, such as *Communicating Sequential Processes, Continuous Time, Discrete Events, Process Network*, and *Synchronous Dataflow*.

While most of existent hardware-software co-design tools focus mainly on the hw-sw co-simulation to build a virtual prototyping environment for performing software design and system verification, PeaCE [6] appear as an extension to Ptolemy to provide a full-fledged co-design environment from functional simulation to system synthesis. It is targeted for multimedia applications with real-time constraints, specifying the system behavior with a heterogeneous composition of three models of computations and exploiting features of formal models maximally during the design process.

The use of a component-based design approach for multiprocessor SoC platforms are presented by [7]. This work proposes a unified methodology for automatic integration of heterogeneous pre-designed components effectively. A design flow called ROSES [8], uses this methodology to generate hardware, software, and functional interface sub-systems automatically starting from a system architectural model.

Another approach to deal with the component communication on multiprocessors SoC is based on the distributed system paradigm to provide a unified abstraction for both hardware and software components [9] that is deeply inspired by the concepts of communication objects standards such as CORBA. This approach uses the generation of a proxy-skeleton scheme to provide transparent communication architecture of the components in both domains (hardware and software).

HThreads [10], focus on specifying and unifying the programming model for hybrid CPU/FPGA systems, under the umbrella of multithreading programming. In this sense, they provide what they call hardware thread interface (HWTI) which supports the generalized pthreads API semantics, allowing for the passing of abstract data types between hardware and software. This approach enabled the migration of threads to the hardware domain, to be implemented as hardware accelerators. The HWTI interface provides access to the same system calls available to software threads, a globally distributed memory to support pointers, a generalized function call model including recursion, local variable declaration, dynamic memory allocation, and a remote procedural call model that enables hardware threads access to any library function [10].

3 Hybrid Hw/Sw Components

Hybrid hw/sw components can be realized as a mixture of hardware and software implementation that can vary from a component that realizes all your functionality in hardware to an implementation fully realized in software. The Fig. 1 depicts this concept, illustrating a full hardware implementation (A), a full software implementation (C) and a mixture of both (B).

In this way, a system composed by such kind of components can adapt to its requirements according to the actual implementation selected to realize a specific interface, used by the application. For instance, a mobile application that requires an efficient use of energy could select an implementation that optimize such a metric to the detriment of others (i.e. cost), while applications that have an unlimited source of power could select implementations that benefit other metrics (i.e. performance, costs).

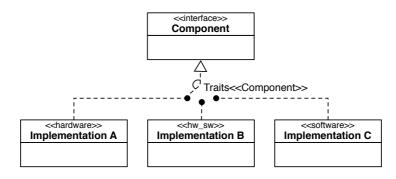


Fig. 1. Hybrid components

To illustrate such components, consider a very common component of most embedded system: a task scheduler. Such a component is mainly represented by a queue of elements that are ready to receive a resource from the system, usually the CPU, an ordering algorithm to establish the order in which the elements on the queue will receive the resource, and a timer responsible for managing the amount of time in which each element will receive of the resource (quantum). A hybrid hw/sw component could arise by pushing those elements to hardware or software domains in several combinations. As an example, the queue and the ordering algorithm could be realized in hardware to improve performance, in detriment of cost. The realization of the time management by the scheduler in hardware could also reduce the occurrence of interruptions of the CPU (to deal with time ticks that will not cause a rescheduling) that could lead to decreased energy consumption for instance.

Design Reusable Hybrid Hw/Sw Components

Most of the methodologies in the design of embedded systems focus the design of each system independently. Although most of them consider the use and selection of pre-existent components already in the initial phases of the design process, most of them do not address how to guide the system development process to yield components that can be effectively reused on further projects. In fact, the construction of components that can be extremely reusable is one of the most challenging issues in *Platform-based design* [3]. Our proposal rests on the foundation of refined software engineering techniques to overcome such challenges and bring not only a flexible interface of components that can freely migrate between hardware and software domains, but also foster the reuse of the captured knowledge from previous projects in the form of reusable components.

To achieve such a degree of flexibility, it is essential to use a domain engineering methodology that elaborates on the well-known domain decomposition strategies, allied with Family-Based Design (FBD) and Object-Orientation (OO). In such an approach, the use of *commonality* and *variability* analysis captures the usage variations of the elements of the domain, than can be further factored out as aspects. In

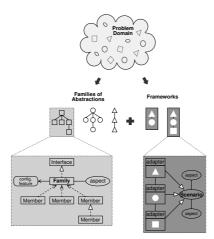


Fig. 2. Overview of domain decomposition

this sense, the use of such techniques guides the domain engineering towards families of components, of which execution scenario dependencies are factored out as "aspects" and external relationships are captured in a component framework, addressing consistently some of the most relevant issues in component-based design, such as reusability, complexity management and composability.

Figure 2 illustrate the main elements of domain decomposition, with domain entities being captured as abstractions that are organized in families and exported to users through comprehensive interfaces. Abstractions designate scenario independent components, since scenario dependencies are captured as aspects during design. Subsequent factorization captures configurable features as constructs that can be reused throughout the family. Relationships between families of abstractions delineate a component framework. Each of these elements is subsequently modeled according to the guidelines of Object-Oriented Design (OOD).

The portability of such components, and thus of applications that use them, across distinct hardware platforms is achieved by means of a construct called *"hardware mediator"*, which defines a hardware/software interface contract between higher-level components and the hardware [11]. Hardware mediators are meant to be implemented using Generative Programming techniques and, instead of building an ordinary *Hardware Abstraction Layer* (HAL), implicitly adapt existing hardware components to match the required interface by adding software to client components. For example, the hardware mediator for a hardware component that already presents the desired interface would be eliminated totally during the system generation process; while the hardware mediator for a hardware component that does not provide all the desired functionality could exceed the role of interface and include software elements to complement the hardware functionality.

Indirectly, the concept of hardware mediator defines a kind of *hybrid hard-ware/software component*, since different mediator implementations can exist for

the same hardware component, each designed around a particular set of goals such as performance and energy efficiency. If the hardware platform itself can be synthesized—as is the case with IP-based platforms—then the notion of a hybrid component becomes even more appealing, since some hardware mediators could exist in different pre-validated combinations of hardware and software.

In fact, the flexibility that underlies the hardware mediator concepts is yielded from the domain decomposition processes that established a model that represents elements of the domain (concepts) and was not driven by a specific implementation of these concepts (no matter if they are hardware or software). In other words, this means that the interface provided by these components is free of implementation domain, and thus can be realized either as hardware or as software.

Hybrid Hw/Sw Component Architecture

In order to provide the seamless migration of the components between both implementation domains, not only should the interface be able to be realized in both domains, but also behave equally in both domains, avoiding the refactoring of the clients that use them. Analyzing how client components interact with their providers, we observed three distinct behaviors patterns:

Synchronous: observed in components with sequential objects that only perform tasks when their methods are explicitly invoked; client components are blocked on the method call until service is completed. Such behavior is intrinsic to software components, and can be preserved in hardware by means of its hardware mediator that can block client requests until the service is completed. The Fig. 3 illustrates an UML activity diagram of such behavior when the component is implemented on the hardware domain. The client requests the service to the component, which is executed while the client stands polling a register to be notified upon the finish of the service (busy waiting), or suspend itself until the hardware interrupts the CPU to resume the suspended client (idle waiting).

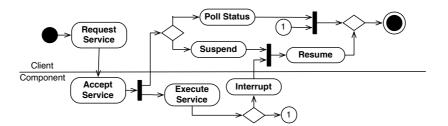


Fig. 3. UML activity diagram of Synchronous Components

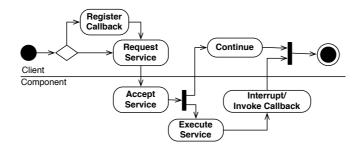


Fig. 4. UML activity diagram of Asynchronous Components

- Asynchronous: observed in components around active objects that perform tasks when their methods are explicitly invoked, but do not block the execution of the client component; some sort of callback mechanism is used to notify the client about service completion. Typical examples for this class of hybrid components are I/O related subsystems, such as file systems and communication systems. The Fig. 4 illustrates an UML activity diagram of such behavior. The client register a callback function if this is not already set (i.e. at initialization of the component) and then requests the service. Once the service is accepted by the component (i.e. the component is not servicing another request) the client continues it execution, while the component executes the service. When the requested service is finished, the component will call the registered call back function, which can be achieved by a simple call if the component is implemented in software or through an interrupt if the component is in hardware.
- **Autonomous:** components implemented as active objects that perform tasks independently of clients; the services provided by the component are either ubiquitous or generate events for clients. Its behavior is depicted in Fig. 5, by a loop of service execution and event generation activities that could be interrupted by external events. In this scenario, moving a hybrid component from software to hardware is feasible as long as the triggering events can be forward to the hardware component. The other way around this is usually accomplished by having the hardware to generate interrupts to notify other

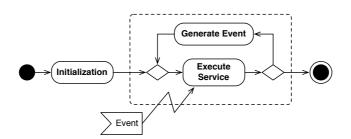


Fig. 5. UML activity diagram of Autonomous Components

components about general system status changes that might result from autonomous activities.

The following section present three case studies that were designed according to the proposed architecture of components, and represent these three behavior patterns.

4 Case Studies

To evaluate the proposed hybrid hw/sw component architecture, three components were developed in both implementation domains, each one representing a specific behavior. A *Semaphore* component, that behaves as a synchronous component, a *Scheduler* that behaves as an autonomous component and an *Alarm* component that behaves as an asynchronous component. The following sections describe the implementation of those components.

4.1 Semaphore

A semaphore is a synchronization tool represented by an integer variable that can be accessed only by two *atomic* operations: p (from the Dutch *proberen*, to test) and v (from Dutch *verhogen*, to increment). The software implementation of the component is realized by an object that aggregates the semaphore variable and a list of blocked threads that are waiting for the resource guarded by the semaphore abstraction. To guarantee the atomicity of its methods, the software implementation of the underlying architecture, and when such a feature is not available, the atomicity is provided by masking the occurrence of interrupts.

The hardware implementation of the semaphore component, pushes each semaphore variable to a hardware implementation, and also manipulates the blocked threads queue on hardware. In this sense, four commands are implemented by the controller: **Create** and **Destroy**, responsible for allocation and deallocation of the internal resources (memory for the variable and the queue) and the other two traditional methods of semaphores P and V. For every P operation, the address of the caller of the method is passed through the input registers to the hardware, and if the caller has to be blocked its address is automatically inserted on the respective queue, and signalized by the status register. Once the resource becomes available (through a V operation) the address of the blocked thread waiting for the resource is removed from the queue, and put in the output registers. The necessity of resume the thread that is addressed on the output register is signalized by the status register.

4.2 Scheduler

The scheduler is responsible for organizing and defining the order that elements access a resource, when such a resource is shared among several elements. The most common use of a scheduler is to establish the order that tasks or process

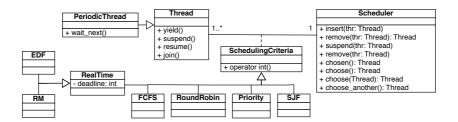


Fig. 6. Process Management family of components

(elements) gain access to use the CPU to run (resource). Figure 6 depict the design of the process management family of components, where the Scheduler hybrid hw/sw components arise.

The Scheduler provides the basic implementation of methods to manipulate the queue of elements that are ready to use the resource managed by the scheduler, such as insert(), remove(), resume() and suspend(). A deeper explanation around the whole *Process management* family of components is beyond the scope of this paper. Let's focus here only on the component Scheduler that was implemented as a hybrid component. Such a component implements the fundamental structure of a scheduler, which consists of a queue of ready elements and time management mechanisms.

The implementation of the software scheduler follows the traditional design of lists. Such a list implementation could be configured to be realized as a conventional ordering list of its elements, as well as a relative list, where each element stores its ordering parameter relative to its predecessor. In this sense each element will hold the difference of its ordering parameter from the previous element, and so and on. In such kinds of implementations, it is particularly interesting when the scheduling policy has dynamic priority increases over time, such as the EDF policy. In such a policy, as the absolute deadline is always a crescent value, the use of a conventional ordering, using the absolute deadline should lead to an overflow of the variable as the execution time is always growing (which can occur in a few hours on 8 bits microcontrollers). Instead of this, the use of a relative queue insures that the deadline is always stored relatively close to the current time, and in this way, the variable will not overflow.

The scheduler implemented in hardware realize an ordered list on its internal memory. It is worth highlight two aspects of this component implementation on hardware, especially for programmable logic devices. Both of these aspects are related to constraints in terms of the resources of such devices. Ideally, the hardware scheduler should exploit maximally the inherent parallelism of the hardware resources. However, such resources are very expensive, especially when the internal resources are used to implement several parallel bit comparators in order to search for elements in the queue, as well as, to find the insertion position of an element in queue.

Moreover, the use of 32 bits pointers, to reference the elements stored on the list (in this case **Threads**) becomes extremely costly, for implementing the

comparators to search for those elements. On the other hand, the maximum number of tasks that a system will execute in an embedded system is usually known at design time, and for that reason, the resources usage of this component could be optimized implementing a mapping between the system pointer (32 bits) and an internal representation that uses only the number of bits necessary, taking into account, the maximum number of tasks running on the system.

4.3 Alarm

The Alarm component is responsible for providing the abstraction of an event generator to the system. This component behaves asynchronously, as its service (the event generation) occurs asynchronous from its request (Alarm instantiation). The Fig. 7 illustrate the design of the Alarm component. This component provides three types of event generation: call a function implemented by the user, resumes a blocked thread, or releases a semaphore (by calling it's v() operation). These events are supported by the Handler interface.

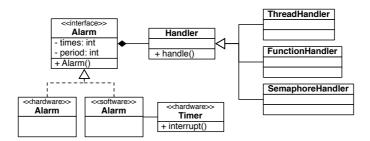


Fig. 7. Alarm component design

The software implementation of the Alarm component is implemented sharing a Timer used to manage the passage of time, and a relative queue of event requests. This queue is organized relative to the number of ticks missing for the occurrence of the event. At each interrupt of the Timer, the number of ticks is updated in the queue, and when this number is less than zero, the handler of the event is invoked. Its implementation on hardware is realized by dedicated counters for each supported Alarm instance, while the maximum number of concurrent instances are defined on design time. The internal memory of the component is used to store a reference for each Alarm handler that is passed to the interrupt routine of the component to generate the respective event.

4.4 Results

An experimentation platform was used to develop, debug, and evaluate those components. It was used the XILINX development board ML-403, which has a VIRTEX 4 FPGA (XC4VFX12), that enable the instantiation of the hardware

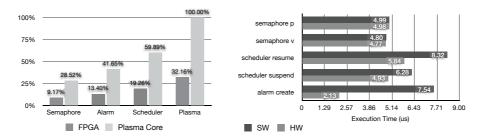


Fig. 8. Logic usage and performance of hybrid hw/sw components

components on the configurable logic, while running the software components on its embedded POWERPC.

In order to evaluate the hybrid component implementations, the "The Dining Philosophers" application was implemented using the three components. The alarm was used to wake-up the philosophers when their thinking period expired. The Fig. 8 shows the area consumed by the hardware implementation of the components, and the execution time of some methods of the components on both domains. The consumed logic of the hardware implementations is compared with the *Plasma* processor (MIPS), as a comparative of deploying a coprocessor approach to handle hardware implementation. The execution time shows a better performance of the hardware implementation of the Scheduler and the Alarm component, while the Semaphore component did not gain that much performance from its hardware implementation, mainly because the evaluated application did not push the usage of semaphores queues, whereas a hardware implementation could effectively bring benefits.

5 Conclusions

This paper presented an architecture of hybrid hw/sw components. It highlighted the importance of the use of an adequate engineering technique in order to design components that are flexible enough to migrate from hardware to software, and vice-versa. Three hybrid hw/sw components was developed and representing the possibles communication behaviors. Several experiments were done building a benchmark application using different combinations of hardware and software implementation of those components. Further research is directed to the migration of hybrid hw/sw components during runtime.

References

 Pop, P.: Embedded systems design: Optimization challenges. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 16–16. Springer, Heidelberg (2005)

- [2] Sangiovanni-Vincentelli, A.L., Martin, G.: Platform-based design and software design methodology for embedded systems. IEEE Design & Test of Computers 18(6), 23–33 (2001)
- [3] Sangiovanni-Vincentelli, A., Carloni, L., Bernardinis, F.D., Sgroi, M.: Benefits and challenges for platform-based design. In: DAC 2004: Proceedings of the 41st annual conference on Design automation, pp. 409–414. ACM, New York (2004)
- [4] Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.: Metropolis: an integrated electronic system design environment. Computer 36(4), 45–52 (2003)
- [5] Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE 91(1), 127–144 (2003)
- [6] Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.: Peace: A hardware-software codesign environment for multimedia embedded systems. ACM Trans. Des. Autom. Electron. Syst. 12(3), 1–25 (2007)
- [7] Cesario, W., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S., Jerraya, A., Gauthier, L., Diaz-Nava, M.: Multiprocessor soc platforms: a component-based design approach. IEEE Design & Test of Computers 19(6), 52–63 (2002)
- [8] Dziri, M.A., Cesario, W., Wagner, F., Jerraya, A.: Unified component integration flow for multi-processor soc design and validation. In: Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 2, pp. 1132– 1137 (2004)
- [9] Rincon, F., Barba, J., Moya, F., Villanueva, F., Villa, D., Dondo, J., Lopez, J.: Unified inter-communication architecture for systems-on-chip, pp. 17–26 (May 2007)
- [10] Anderson, E., Peck, W., Stevens, J., Agron, J., Baijot, F., Warn, S., Andrews, D.: Supporting high level language semantics within hardware resident threads. In: International Conference on Field Programmable Logic and Applications, 2007. FPL 2007, August 2007, pp. 98–103 (2007)
- [11] Polpeta, F.V., Fröhlich, A.A.: Hardware mediators: A portability artifact for component-based systems. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.) EUC 2004. LNCS, vol. 3207, pp. 271–280. Springer, Heidelberg (2004)