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Abstract—In this paper, we introduce a cross-layer, application-
oriented communication protocol for Wireless Sensor Networks
(WSN). TSTP – Trustful Space-Time Protocol – integrates most
services recurrently needed by WSN applications: Medium Ac-
cess Control (MAC), spatial localization, geographic routing, time
synchronization and security, and is tailored for geographical
monitoring applications. By integrating shared data from multi-
ple services into a single network layer, TSTP is able to eliminate
replication of information across services, and achieve a very
small overhead in terms of control messages. For instance, spatial
localization data is shared by the MAC and routing scheme,
the location estimator, and the application itself. Application-
orientation allows synergistic co-operation of services and allows
TSTP to deliver functionality efficiently while eliminating the
need for additional, heterogeneous software layers that usually
come with an integration cost.

Keywords-Wireless Sensor Networks; Application-oriented;
Protocol; Trustful; Cross-Layer; Geographic; Space-Time

I. INTRODUCTION

Wireless Sensor Networks have been the focus of intense
research for well over a decade by now. Several physical layers
have been proposed, along with a myriad of medium access
and routing protocols. Such protocols have been made energy-
aware; aggregation and fusion strategies have been employed;
basic infrastructures have been enriched with location, timing,
and security protocols; operating systems have been designed
to support higher-level abstractions, along with large-scale
management systems designed to handle the produced data
properly. We are currently seeing these networks being con-
nected to the Internet of Things (IoT).

Extensive research is also being carried out on cross-layer
optimizations for wireless communication [9] and WSN [15]
protocols. These works focus on taking into account related
information given by one layer to make decisions at a different
layer in the communication stack, and have been proven to
be greatly effective. Such efforts have been often carried out
in such a way as to preserve the interface of the original
individual protocols and maintain the modularity of traditional
layered architectures. In our opinion, however, this approach
misses a great opportunity to design a truly application-
oriented protocol for WSN, in which services are intimately
combined to optimize resources at the same time as they
address real and specific application needs.

In this paper, we describe the design of Trustful Space-
Time Protocol (TSTP), an application-oriented, cross-layer
protocol for WSN. Instead of focusing on keeping the original
protocol interfaces in a modular, layered architecture with
shared data, TSTP focuses on efficiently delivering function-
ality recurrently needed by WSN applications: trusted, timed,
geo-referenced, SI-compliant data that is resource-efficiently
delivered to a sink. TSTP delivers this functionality directly
to the application in the form of a complete communication
solution, which allows the design of optimized, synergistic
co-operation of protocols while eliminating the need for
additional, heterogeneous software layers that come with an
integration cost and often result in replication of data.

By including data from the spatial and temporal localization
services in every message, TSTP devices are able to localize
themselves mostly by observing network traffic. A fully-
reactive geographic routing and MAC scheme is used, which
also takes advantage of this data. Finally, the security mecha-
nisms exploit temporal synchronization as well, resulting in a
small total overhead in terms of control messages. A reduction
from 11 messages to 6 is achieved in the node bootstrapping
process in comparison with a Standalone design (Section IX).

II. RELATED WORK

TCP/IP is at the foundation of the internet today. Ordi-
nary TCP implementations have been tuned for decades to
traditional networks, made up of wired links and stationary
hosts. TCP now performs well on such networks, but it has
been shown that traditional implementations perform poorly
on wireless networks [9]. Although there are proposals for
TCP/IP-based WSN [23], many authors believe and have
shown that more efficient solutions can be devised.

Cross-layer designs have been shown to be very efficient in
optimizing wireless networks [20]. Any design that breaks in
some way the black-box characteristic of the classic TCP/IP
stack can be considered cross-layer [9]. In practice, cross-layer
designs usually work by taking information from one or more
layers of a typical layered stack to optimize a set of parameters
or make a decision in another layer or set of layers.

For instance, CEDA [4] is a network-layer protocol for
WSN which takes into account the energy level of neighboring
nodes as a weight factor when routing data, avoiding nodes
with less remaining energy [15]. The authors show that only978-1-4673-7929-8/15/$31.00 c© 2015 IEEE



Header Format
Bits: 3 1 2 2 8 3*sb + tb 3*sb + tb 0 or 32

9 - 54 octetsMessage Time Spatial Temporal Location Last Hop Origin Location
Type Request Scale Scale Confidence x,y,z,t x,y,z,t Deviation

Figure 1: TSTP message header format.

5% of the nodes have their energy depleted when all the
nodes are dead using the AODV protocol [15]. TSTP makes
extensive use of this kind of information sharing strategy.

From the myriad of cross-layer proposals, a minority in-
volves the application layer. In [13], the authors propose an
application-driven cross-layer optimization for video stream-
ing over wireless networks, involving the application, data
link and physical layers. The main goal of the strategy is to
maximize an application-specific metric, the peak signal-to-
noise ratio (PSNR), which closely represents user-perceived
video quality. To achieve that, a cross-layer optimizer observes
transmission data and packet error rate, data packet size
and channel coherence time. Based on these parameters and
a model predicting the behavior of the physical layer, the
optimizer selects values of: video source rate (application
layer), time slot allocation (data link layer), and modulation
scheme (physical layer) which maximizes the average PSNR
among all users. TSTP relates in the sense that its main focus
is on fulfilling identified application needs.

There are also works that try to identify WSN needs, but
they usually focus on aspects such as MAC, routing, QoS,
mobility, and sometimes security [5], [15], [9], and are careful
in preserving the modularity of the traditional layered model.
On the other hand, TSTP focuses on geo-monitoring WSN
applications and aims at identifying and intimately integrating
services recurrently needed in this context: spatial localiza-
tion, geographic routing, time synchronization, security and a
domain-convenient API.

III. APPLICATION INTERFACE

Communication in TSTP occurs between sensors and a
specific node called sink. Sensors are nodes that can measure
and report one or more types of data about the environment
(e.g. temperature, luminosity) with a certain precision and
maximum frequency. A sink is a node that is interested in
such information. From the point of view of a sink, given that
the information acquired about a desired space-time region is
trustful and was measured with a certain precision, it does not
matter which particular sensor measured it. TSTP is designed
so that sinks announce what information they are interested
in, and sensors deliver it if able.

Figures 1 and 2 show the main TSTP messages with which
sinks request and sensors send information. A sink node
announces interest in a physical quantity using an Interest mes-
sage. This message specifies the space-time region in which
the interest is valid (a sphere in space and a time interval), the
periodicity of responses, SI unit, minimum required precision,
and the response mode, which can assume two values:

0 Every able sensor in the region should respond;
1 Only one responding sensor is enough.

Interest Message
Bits: 4*sb + 2*tb tb 40 7 1

22 - 104 octetsRegion Data Response
Header x,y,z,r,t,∆t

Period S.I unit Precision Mode

Data/Report Message
Bits: 40 variable 128

30 - 75 octets + DataData
Header S.I unit Data MAC

Figure 2: TSTP Interest, Data and Report messages.

Code Unit Scale Size (bits) Maximum Value
00 cm 50 8 127.5 m
01 cm 1 16 655.3 m
10 cm 25 16 16382.5 m
11 cm 1 32 42949.6 km

Table I: Spatial Scale Codes

When receiving an Interest message, a sensor checks if it
is inside the desired region and able to measure the requested
quantity with the required precision. If so, the Interest is saved
and the sensor automatically responds with a Data message
every period of time until the Interest expires or it leaves the
interested area.

The Data message’s payload consists simply of a mea-
surement and unit. It can be made trustful by a Message
Authentication Code (MAC) and encryption with the key
derivation strategy exposed in Section VII.

Messages are routed geographically to the destination, as
explained in Section V, so the sink is oblivious of which
specific sensor shall receive the Interest message or respond
with data.

Tables I and II show the meaning of the values of the scaling
bits. These bits define the size of each spatial (denoted sb) and
temporal (tb) values in the corresponding message, as well as
a multiplier to be applied. For instance, with time scale value
01, time fields shall have 16 bits each and represent multiples
of 500ms, so a value of 42 would represent 21s. Such scaling
makes these fields adaptable to different application scenarios,
which may vary from, for instance, monitoring a small room
to a large forest.

The message type is indicated by the Message Type bits,
according to Table III. The Bootstrap messages, as well as the
other unmentioned fields, will be explained in the rest of the
paper.

The units used in Interest and Data messages are SI base

Code Unit Scale Size (bits) Maximum Value
00 s 1 8 4.25 minutes
01 ms 500 16 9.1 hours
10 ms 1 32 49 days
11 ms 500 32 69 years

Table II: Temporal Scale Codes

Code Message Type Code Message Type
000 Interest 100 Bootstrap 0
001 Data 101 Bootstrap 1
010 Report 110 Bootstrap 2
011 Reserved 111 Bootstrap 3

Table III: Message Types



or SI derived units, and their representation is inspired by
the IEEE1451.0 standard [11]. Radian and Steradian, together
with the seven SI base units, form the nine base units of the
standard. Derived units are formed by the product of base units
raised to a power (e.g. pressure is N/m2), therefore, storing
the exponents of each base unit is enough to represent any
derived unit. For example, the unit of acceleration is m/s2, and
we can represent it as rad0 sr0 m1 kg0 s−2 A0 K0 mol0 cd0

or as the sequence 0, 0, 1, 0,−2, 0, 0, 0, 0.
In TSTP, each exponent is represented by 4 bits. Each value

is multiplied by two to achieve a resolution of 1/2. After that,
8 is added to the exponent (two’s complement) to represent
them as signed quantities. Therefore, exponents can assume
values from -8 to +7. For example, the exponent 1/2 would
have 9 as its decimal representation since 2×1/2+8 = 9. Table
IV presents additional examples. The enum field is useful in
particular cases to indicate a ratio of the same unit (dimension-
less); for example, when measuring Strain (unit m/m), enum
is set to 1. When the output of a transducer represents positions
of switches (e.g. “on”, “off”, “open”, “closed”), it cannot be
derived from base units and enumeration 4 is the appropriate
value. As there are nine base units plus one enumeration field,
40 bits are necessary to represent any SI unit in TSTP. This is
the only difference between the representation adopted in the
IEEE1451.0 standard, which uses 80 bits.

Force(N) enum rad sr m kg s A K mol cd
Exponent 0 0 0 1 1 -2 0 0 0 0
Decimal 8 8 10 10 4 8 8 8 8

Strain(m/m) enum rad sr m kg s A K mol cd
Exponent 1 0 0 1 0 0 0 0 0 0
Decimal 8 8 10 8 8 8 8 8 8

Switches enum rad sr m kg s A K mol cd
Exponent 4 0 0 0 0 0 0 0 0 0
Decimal 8 8 8 8 8 8 8 8 8

Table IV: Examples of representation of units in TSTP

IV. POSITION ESTIMATION

In mobile wireless networks, there are distributed algorithms
allowing nodes to estimate their location via multilateration
given that nodes can estimate their distances to one another
and there are anchor nodes that know their own position
[18]. There are physical layers which provide information
that allows this distance estimation, for example: the Re-
ceived Signal Strength Indication (RSSI) provided by an IEEE
802.15.4 implementation [17], and the Time Difference of
Arrival (TDOA) provided by a UWB transceiver [16]. The
location of anchor nodes can be determined equipping a subset
of the nodes with GPS receivers, or simply pre-set if a node is
not mobile. This makes anchor nodes more expensive and/or
difficult to deploy, thus it is generally desirable to reduce their
number.

The Heuristic Environmental Consideration Over Position-
ing System (HECOPS) [18] is one such algorithm. HECOPS
enriches multilateration by establishing a ranking system to
determine the reliability of each estimated position and using

heuristics to mitigate the effects of measurement errors (which
can be high, especially in low-cost nodes). Such enrichments
reduce the number of necessary anchor nodes, by allowing
non-anchor nodes to act as anchors when their confidence is
high enough.

In the original implementation of HECOPS, nodes maintain
a table of neighbor data containing their alleged coordinates,
confidence and RSSI distance measurements. Every node
periodically broadcasts its table, and the nodes receiving it
can update theirs. With enough data from neighbors, a node
can estimate its position and confidence via multilateration.

To cope with the irregular nature of RF signals and RSSI
measurements, HECOPS defines a deviation heuristic value,
which is detected when two anchor nodes estimate their
distance to each other via RSSI and then compare it to their
actual distance (since their coordinates are known). When
a deviation is detected, it is heuristically assumed to affect
every node in the same direction that the deviation was found,
and nodes can take that into account when estimating their
positions. The region affected by a deviation is defined as a
circle around one of the anchor nodes, with radius equal to
half the distance between the two anchors (Figure 3).

We expect the required anchor proportion be as small

as possible, without compromising the results accuracy.

For that reason, the HECOPS allows nodes with estimated

positions to be chosen as landmarks. In order not to let

this characteristic compromise the system’s performance,

HECOPS uses a heuristic scheme that gives a value to the

confidence on location information given by nodes. Each

node, when calculating its position, defines a confidence

value on the result obtained. This value ranks the nodes

that should be chosen by a node that has to estimate its

location.

Confidence calculation is based on the confidence

value of the nodes chosen as landmarks and on the con-

fidence of the nodes used in distance calibration related to

that landmarks. In a scale varying from 0 to 1.0, anchor

nodes have maximum confidence on its position, equal to

1.0. The other nodes have confidence limited by 0.8, given

by equation 2, where Cx is the confidence on position that

is being calculated by a node X, Ci the confidence on each

landmark chosen by X (n in total) and Cix the confidence

of the node that, together with the node i, have defined the

deviation applied to the distance between the nodes i and

X, if any (In Figure 2, Cix would be the confidence on

node B, considering i the node A).

Cx = 0.8×

∑
n

i=1
(Ci × 0.75 + Cix × 0.25)

n
(2)

Location information received from anchors is very

trustworthy. But, if the distance estimation of that node

has been calibrated by another node, the confidence is

even greater. For this reason, the weights of 0.75 and 0.25

were attributed for the confidence on a chosen landmark

and the confidence of the node used to calibrate the dis-

tance between them, respectively. Thus, when a node that

has to estimate its position has already chosen its land-

marks and have the estimated distances to all of them, it’s

enough to apply some method to calculate coordinates,

like lateration or min-max [6].

In the beginning, only anchor nodes know their posi-

tions. They start by broadcasting their identification (ID),

coordinates (x,y) and confidence values (Figure 3(a)). The

nodes that receive this message store the information to-

gether with the RSSI reading. If the receiving node al-

ready knows its position, it calculates the distance and de-

viation between itself and the sending node, and broad-

casts this information (Figure 3(b)). This information is

in turn stored by the nodes who wish estimate their posi-

tions.

ID

x         y

Confidence

(a) Position information

message.

IDID BA
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ABdistance
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(b) Deviation information
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Figure 3. Content of exchanged messages
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Figure 4. Determining if two nodes are in the

same direction, in order to use calibration

When a message with deviation information is received

by a node that doesn’t know its coordinates, it checks if it’s

in the same direction than the transmitter, related to the

third node described in the message. If it is, it calibrates

the RSSI reading of a message sent by that third node with

the deviation.

The checking of a node to discover if it’s in the same

direction of another one related to a sending node is made

according to proximity between them. In Figure 4, the

node C receives a message from B about the deviation be-

tween A and B. So, node C verifies if its distance to node

B is lower than the half of the distance to A. In a positive

case, node C calibrates the RSSI reading of the last mes-

sage received from A with the deviation between A and B.

When these conditions are met, hereinafter we will refer

as the “tri” occurrence.

Position information messages are stored by the nodes

that will estimate its coordinates in a list ordered by the

confidence value. When the list size reaches 3 it’s already

possible to execute the position calculation. The 3 nodes

of the list with greatest confidence in their positions are

chosen as landmarks.

3. Simulations and Evaluation

In order to evaluate the location system implemented

in this work, and to allow tweaking of parameters in the

location algorithm, RSSI measurements were collected in

the field, and stored for offline execution. For this, a wrap-

per was developed to allow running the same code devel-

oped for the sensor platforms with EPOS [7], a deeply-

embedded operating system, and in UNIX workstations.

Through this wrapper, the same code that would run in

a sensor node runs in a thread, and message exchanging

is performed through memory copies, using the data col-

lected in the field.

In order to allow this execution scenario, RSSI mea-

surements were collected between every pair of nodes in

a 3× 3 sensor grid, with nodes 5m apart. These measure-

Figure 3: HECOPS deviation heuristic. A and B are anchor
nodes that detect a deviation between them, and C is assumed
to also be affected by it.

A. Design Rationale

Given that spatial coordinates are embedded in every TSTP
message (Last Hop fields) and assuming distances can be
estimated from information provided by the physical layer
(such as RSSI), any node in a sufficiently active region can
build the position estimation table passively, only by observing
passing messages. Location Confidence and Location Devi-
ation (as defined by HECOPS [18]) fields are included as
well so that nodes can take deviation heuristics into account,
as well as distinguish between anchors, confident and un-
confident peers. This design brings the advantages of HECOPS
mentioned above while introducing zero overhead in terms of
new messages.

V. MAC AND ROUTING

In Preamble-Sampling MAC (PS-MAC) protocols [6], sen-
sor nodes spend most of their time in sleep mode and wake
up for a short duration called clear-channel-assessment (CCA)



every checking interval (CI) to check whether there is an
ongoing transmission on the channel. To avoid deafness, each
data packet is preceded by a long preamble, assuring that
receivers wake up in time to detect the transmission. PS-MACs
enable receiver nodes to keep their radio off most of the time,
saving considerable amounts of energy. X-MAC [3] and RB-
MAC [1] are examples of PS-MAC protocols.

In Receiver-Based MAC (RB-MAC) [1], senders transmit
data without defining a particular node as receiver. The final
destination is a pre-defined sink. Preambles consist of micro-
frames that contain useful information such as countdown to
data transmission, sender distance to sink and payload se-
quence number. All neighboring nodes within communication
range of the sender sense the channel every CI interval, obtain
a micro-frame and extract the information; then, only eligible
receivers (nodes closer to the sink) go back to sleep and wake
up to receive the data at the time indicated by the countdown.
Nodes that receive the data without error are relay candidates,
and start a back-off timer based on its own distance to the sink
and possibly other factors (e.g. remaining energy), which when
elapsed will trigger a CCA. The node with the shortest back-
off timer will sense no channel activity and proceed to transmit
the preamble for CI units of time. Other relay candidates will
detect the winner’s preamble containing the same sequence
number, drop the data and go back to sleep since the packet
is already being forwarded. Figure 4 illustrates this process.
As a consequence of the way relay candidates are determined,
packets are geographically routed to the final destination in a
greedy way.

RB-MAC is significantly more resilient to lossy links when
compared to sender-based MAC protocols (in which sender
nodes keep the addresses of perceived neighbors and define a
receiver) [21]. As the number of network nodes increases, RB-
MAC requires fewer retransmissions, consequently reducing
latency and energy consumption [21].

Figure 4: Timeline of RB-MAC.

A. Design Rationale

Because of its efficiency and the design consideration that
most messages are sent from a sensor to a single sink,
RB-MAC is used as TSTP’s MAC and geographic routing
mechanism. The preamble is composed of several micro-
frames containing useful information (Figure 5):

All Listen: when this bit is set, all nodes that receive
the microframe should wake up to receive the corresponding

Microframe
Bits: 1 7 32 8

6 octetsAll Last Hop
Listen Count distance ID

Figure 5: TSTP preamble’s Microframe format.

Master Slave

T1 = clock Sync

T1, T2 = clock

Delay Req T3 = clock

T4 = clock

T4 Delay Resp

T4

Figure 6: One-step PTP overview. clock is the current value
of the local clock. Time flows from top to bottom.

message, regardless of distance. Nodes set this bit when
sending messages that are not destined to the sink (e.g. Interest
messages).

Count: the number of microframes left until the correspond-
ing message.

Last Hop distance: the distance from the node currently
transmitting this message to the destination.

ID: kept the same for the entire lifetime of a message,
used by forwarder nodes to determine whether another node is
already forwarding the same message. It is a random number,
except if the corresponding message was generated as a result
of an Interest message with Response Mode 1 (Section III). In
this case, the ID is calculated as

ID = (H(I) + b(t− t1)/P c) mod 28

where H(I) is a network-known hash function of the entire
Interest message, t is the current time, t1 is the region start
time of the Interest message, and P is the period indicated
in the Interest message. This mechanism has the effect that
messages generated from the same “one-responding-sensor”
Interest region will have the same ID and, therefore, will be
treated as the same message.

VI. TIME SYNCHRONIZATION

A variety of different algorithms and strategies for time
synchronization exist (e.g. NTP, RBS, FTSP). In particular,
we consider the Precision Time Protocol (PTP) [16], which is
defined by the IEEE 1588 standard and designed to keep nodes
in a Local Area Network synchronized with high precision. In
the one-step approach, time is synchronized by the exchange
of three messages, as shown in Figure 6. In each message,
the Master node sends to the Slave its local timestamp (T1
and T4), so the Slave can calculate the network delays in both
directions (β and γ) and its clock offset (φ) relative to the
Master according to Equation 1.

φ =
β − γ

2

{
β = T2 − T1
γ = T4 − T3

(1)



PTP can keep a PAN synchronized with sub-millisecond
precision [16].

A. Design Rationale

Given that timestamps are embedded in every TSTP mes-
sage, a variation of PTP enables sensors to synchronize their
clocks by taking advantage of passing messages of any type
and introducing only one extra message on the network.
In TSTP, there are no PTP roles: any node with enough
confidence in its clock can play the Master part (and naturally,
any node can be a Slave).

Any received message with the PTP Request bit (Figure 1)
not set can take the role of a PTP Sync message; let M1 be that
message. When a sensor needs to recalibrate its clock, upon
retransmitting M1 it will do so with the PTP Request and All
Listen bits set, making it a Delay Req message. Upon receiving
a message with this bit set, the original sender of M1 (and only
the original sender) transmits back a special Data message M2

with distance to destination set to 0 in the preamble. Any other
node receiving the retransmitted M1 clears the PTP Request
bit and routes it as usual. Every node will ignore M2 (because
distance to destination is 0), except the node that requested it,
which will extract the message’s timestamp to recalibrate its
clock, making M2 a Delay Resp message. Figure 7 illustrates
this process.

Node a Node b Node c

M
1

M
1
 (PTP Req = 1) M

1
 (PTP Req = 1)

M
2

M
1 
(PTP Req = 0)

T
1

T
2

T
4

T
4

T
3

T
4

Figure 7: TSTP’s time synchronization example.

VII. SECURITY

WSN devices communicate through wireless technology,
allowing any radio interface configured at the same frequency
band to monitor or participate in communications – which
is very convenient for attackers. In order to avoid attacks, a
secure infrastructure must provide the principles of confiden-
tiality, authenticity and integrity [22]. The use of Elliptic Curve
Cryptography is popular for establishing shared keys because
of its good processing/security trade-off, making it suitable
for resource-constrained devices. There are many efficient
implementations [14] [12] and proposals [10] [8] for security
schemes in WSN and IoT, but they usually require either that
a third-party act as a Certificate Agent using a secure, out-of-
band channel or that sensitive cryptographic information (e.g.
a pre-set secret) is pre-loaded in the sensor node.

EPOS’ Trust Strategy [7], [19], outlined in Figure 8,
contrasts by minimizing the pre-deployment effort, utilizing

unique sensor IDs, synchronized clocks and time of deploy-
ment as naturally shared information between the sensor and
the sink. It also takes advantage of hardware-accelerated AES
engines (present in many devices due to being part of the
IEEE802.15.4 standard) for encryption, key derivation, and
One-Time Passwords (OTP) generation using the Poly1305-
AES [2] algorithm.

Sensor Sink

Diffie
Hellman

Master
Secret

PTP

Poly

Time
Stamp

ID

Diffie
Hellman

Master
Secret

PTP

DB

Poly

IDs, 
Auths

Time
Stamp

Auth OTP AuthOTP

Figure 8: EPOS’ key bootstrapping overview.

The protocol assumes synchronized clocks (Section VI).
Sensors are assumed to hold a unique identifier (ID) known
only by them and the sink, and Auth is calculated indepen-
dently by both as a one-way hash function of the ID. Each
party also holds an Elliptic Curve Diffie-Hellman (ECDH)
public-private key pair.

The first step for mutual authentication and key estab-
lishment between a sensor and the sink is a regular ECDH
agreement, which will result in a shared Master Secret Kms.
Afterward, the sensor node calculates a One-Time Password
using the Poly1305-AES algorithm, according to Equation 2,
where T is the current truncated timestamp. The calculated
OTP is then sent along with the Auth code to the sink.

OTP = Poly1305(Kms, ID, T ) (2)

For authentication, the sink fetches on its database the
corresponding ID for the received Auth and reproduces the
OTP calculation for every pending Kms, until a match is found
– in which case the matching ID and Kms are tied together,
and the sink has evidence that Kms was shared with the only
legitimate holder of that particular ID. The sink proceeds by
sending back the Auth OK code, which is the ID encrypted
under a fresh OTP, so the sensor also has evidence that Kms

was shared with the only other legitimate node that knows its
ID: the sink. From this step on, secure messages are signed
with a MAC and encrypted with AES using a fresh OTP as
key, which assures data confidentiality, authenticity, integrity
and temporality.

A more in-depth presentation and discussion about this
protocol can be found in [19].

A. Design Rationale

EPOS’ Trust Strategy was conceived with very similar con-
text and design constraints as TSTP, and so it is incorporated



Bootstrap 0 Message
Bits: 128

25-70 octetsDH
Header Public

Bootstrap 1 Message
Bits: 3*sb 128

28-94 octetsDestination DHHeader x,y,z Public

Bootstrap 2 Message
Bits: 128 128

41-86 octets
Header Auth OTP

Bootstrap 3 Message
Bits: 3*sb 128

28-94 octetsDestination AuthHeader x,y,z OK

Figure 9: TSTP Security Bootstrap messages.

without change. Figure 9 shows the message formats used for
performing the required two-way handshake, in order.

VIII. BOOTSTRAPPING

A new sensor joining the network must go through four
Bootstrap stages, in order:

Position Determination using the HECOPS protocol (Sec-
tion IV). A sensor must not send messages until its position
has been estimated;

Clock Synchronization: Once position has been deter-
mined, the sensor can start routing packets on the network.
Each routed packet is sent with the PTP Request bit set on
the header until the sensor successfully synchronizes its clock
(Section VI) with a pre-determined precision;

Security Bootstrapping with EPOS’ Trust Strategy (Sec-
tion VII) enables the sensor and the sink to authenticate
mutually and establish a shared key. The bootstrapping sen-
sor deduces the coordinates of the sink from passing TSTP
messages it observes;

Report: Finally, the sensor sends a confidential Report
message for each quantity it can measure, with a value equal
to the smallest quantity it can sense (i.e. its precision) in the
payload, as well as the unit it can sense in the Report message
header.

IX. ANALYSIS

In previous works, we analyzed the performance of each
of the presented blocks [21] [16] [18] [19]. In this section,
we bring an analytical discussion on the total latency and
number of generated messages caused by the integration of
all these blocks in the context of TSTP. For comparison, we
also analyze these metrics in a design we call Standalone, in
which each block is implemented individually on top of RB-
MAC.

We analyze the case of a new sensor s being deployed in
an active region of the network, and we estimate how long it
takes for it to finish bootstrapping (Section VIII). We make
the following assumptions:
• Radio ranges are uniform, symmetrical and normalized

(1 unit area = 1 radio range);
• Sensor nodes are randomly placed in the network area

according to a Poisson process, with density ρ nodes per
unit area [24];

• Sensor s and all its neighbors will receive a message
every λ > CI units of time (e.g. both are in the route of
a same Interest region with Period λ);

• A sensor contends to forward a message along with all its
neighbors. Each relay candidate can win the contention
with equal probability.

A. Position Determination

A sensor must receive at least one message from three
different confident neighbors to perform trilateration and esti-
mate its position. The expected value of the Poisson process,
ρ, gives the expected number of sensors per unit area. The
expected number of neighbors E[N ] of a sensor is then the
expected number of sensors in the radio coverage area (π×1),
minus the sensor itself:

E[N ] = ρπ − 1 (3)

Let P [M = m|N = n] be the probability that, given
that the sensor has n neighbors, the third different HECOPS
coordinate will arrive exactly at the mth message. For this
event to happen, the first coordinate must arrive with the first
message, and might come from any of the n neighbors. The
second different coordinate will come from any of n−1 other
neighbors and must arrive any time in the next m−1 messages.
Before it does, only the first neighbor might send messages,
and after it does, only the first and second neighbors might
send messages until the last message, which must come from
one of the other n− 2 neighbors. Therefore:

P [M = m|N = n] =

n(n− 1)(n− 2)

(
m−3∑
i=0

2i
)

nm
(4)

for n > 2.
Using this result, the expected waiting time until a sensor

receives a message from exactly 3 different neighbors, given
that it has n neighbors, is given by:

E[H | N = n] = λ

∞∑
m=3

(m× P [M = m | N = n]) (5)

The original, standalone HECOPS would take time 3λ to
complete, assuming that neighbors alternate when sending
location information, and do so with period λ > CI . It would
generate 3 one-hop messages while TSTP generates none in
this step. These messages would be generated continuously
for maintenance of the position estimation tables.

B. Time Synchronization

Now, sensor s can start forwarding messages and needs to
synchronize its clock using the PTP Request bit. The sensor
needs to win the contention of a message to broadcast a
PTP Request. From our assumptions, this will happen with
probability (n+ 1)−1 for every message, n being the number
of neighbors of s. The probability of s winning contention
exactly at the mth message is:

P [C = m | N = n] =

(
n

n+ 1

)m−1
1

n+ 1
(6)



The expected time until s wins contention is thus:

E[C | N = n] = λ

∞∑
m=1

(m× P [C = m | N = n]) (7)

After transmitting a PTP Request, which takes CI units of
time, the sensor receives a response, which also takes CI . As
in the Standalone implementation, the original PTP requires
an exchange of 3 new messages with the sink, which would
take time 3L(D = D) (Section IX-C). This process would
happen periodically for every node to maintain the clocks
synchronized. TSTP generates only one single-hop message
per iteration.

C. Security Bootstrapping and Message Latency

For the Security Bootstrapping step, the same analysis holds
for TSTP and a Standalone implementation. The sensor and
the sink exchange four messages for key establishment and
authentication, and the Report step sends at least one message,
yielding a total of 5 messages. Thus, we now estimate the
expected time a message takes to arrive at its destination. We
can reuse results from GeRaF’s analysis [24] if we observe
that RB-MAC is similar to the routing strategy presented in
that work, with the main differences being that sensors have
synchronized duty cycles and can be considered to be always
awake, while GeRaF considers that sensors sleep and wake up
randomly. The expected number of hops E[n], assuming that
the best possible relay (the one closest to the destination) is
always selected, is approximated in [24] as a function of the
distance to destination D:

D − 1

E[ζ(D)]
+ 1 ≤ E[n] (8)

where

E[ζ(D)] = 1−
∫ 1

0

e−MA(D−a,D)/πda (9)

is the average advancement towards the destination, M = dρπ
is the average number of available relay nodes in the coverage
area, and d is the probability that a node will be awake. As
noted, in RB-MAC d = 1, because nodes have synchronized
duty cycles. A(r,D), given in [24], is the area of the inter-
section between two circles with centers at distance D from
each other and radii 1 and r.

It is easy to include a factor p, representing the probability
that a message is not corrupted during transmission between
two consecutive hops, when calculating the total expected time
a message takes to travel a distance D. The probability of
retransmission at each hop for RB-MAC is [21]:

PRet =
1

1− (1− p)n
(10)

being n the number of relay candidates. In our case, n = ρπ
2 .

Assuming that at most one retransmission occurs at each hop,
average message latency is given as the total expected time
taken for a message to travel a distance d:

L(D = d) =

(
d− 1

E[ζ(d)]
+ 1

)
× (1 + PRet)× CI (11)

and, finally, the total expected time taken for a sensor deployed
at distance D from the sink to be fully functional (synchro-
nized in time and space, authenticated, holding a shared key
with the sink and reported) is given as:

E[H | N = ρπ−1]+E[C | N = ρπ−1]+2CI+5L(D = D)
(12)

generating a total of 5 node-sink messages and 1 one-hop
message. With standalone implementations of each block,
3 one-hop messages and 8 node-sink messages would be
generated for complete bootstrapping, with a total time of:

3λ+ 3L(D = D) + 5L(D = D) (13)

Figure 10 shows the time taken by each step of the boot-
strapping process as a function of node density for a fixed
distance. It can be seen that, for densities up to around 10
nodes per radio range, the integration of the building blocks
in TSTP can result in up to 31% shorter time until successful
bootstrapping, when compared with standalone implementa-
tions of each block. When the density is too high, PTP starts to
dominate the total TSTP time because of the assumption that a
sensor competes with equal probability against every neighbor
to forward a received message. Thus, in this simplified model,
the more neighbors a node has, the harder it is to win the
contention and issue a PTP Request.

Figure 11 shows how node density and distance to the sink
affect RB-MAC’s latency. Also, it compares the total time be-
tween the Standalone and TSTP designs for the same variation
of parameters. Here, it can be seen that for small distances
and densities, the Standalone design can be better than TSTP
in terms of latency. However, TSTP quickly outperforms the
Standalone model when the values of distance and density get
higher.

Figure 12 outlines the effects of channel quality on node-
sink latency.
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X. CONCLUSION

In this paper, an application-oriented communication proto-
col for WSN was presented, which integrates several blocks
in a cross-layer approach in order to efficiently deliver func-
tionality often needed by WSN applications: MAC, spatial lo-
calization, geographic routing, time synchronization, security,
and an application interface concerned with measuring and
communicating physical quantities. An analytical model was
developed to predict the total latency caused by two designs:
TSTP and Standalone – in which the same blocks are present
without integration. It was argued that TSTP can achieve 31%
faster sensor bootstrapping time and reduce the number of
generated messages from 11 to 6 in the bootstrapping process
alone.
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