
High Performance Communication System Based on Generic Programming

André Luı́s Gobbi Sanches
gobbi@lisha.ufsc.br

Fernando Roberto Secco
secco@lisha.ufsc.br

Antônio Augusto Fröhlich
guto@lisha.ufsc.br

Software and Hardware Integration Laboratory - LISHA
Universidade Federal de Santa Catarina - UFSC

Abstract

This paper presents a high performance communication
system based on generic programming. The system adapts
itself according to the protocol being used on communica-
tion, simplifying the development of libraries. In order to
validate the concepts, a MPI implementation has been de-
veloped and it is compared to a traditional implementation
- MPICH-GM. It is demonstrated that the same functional-
ity and interface can be offered with similar performance,
but with much less programming effort. That is an evidence
that the large size of traditional MPI implementations is due
to the limitations of conventional communication systems.

1. Introduction

Traditional communication systems are often organized
just like the OSI protocol stack: each layer provide services
to the upper layers. Each layer may handle the lower ones,
but not the upper layers.

The upcoming of low latency networks and their employ
in high performance computing the traditional communica-
tion systems have proven to be not suited. Their hard layer
structure results in higher latency and processing overhead.
As a result, high performance communication systems often
access the communication hardware directly and offer the
communication system through middleware libraries. This
method is known as OS Bypass.

In the last years, many high performance low level com-
munication libraries have been developed. All libraries offer
similar functionality, but each has its own programming in-
terface. In order to enable the development of portable par-
allel programs, standard interfaces such as MPI (The Mes-
sage Passing Interface Standard) have emerged. MPI has be-
come the de facto standard for low level communication.

Almost every library support its interface, so that MPI pro-
grams are highly portable.

However, MPI implementations are often large and com-
plex, and building a library that conforms to the standard
requires quite some effort. As an example, the MPI imple-
mentation over the GM low level library for Myrinet net-
works has 120.000 lines of code, where 30.000 are not
portable 1. MPI is often provided as a middleware library
organized in layers, where some are platform-independent
and others are not. This architecture is similar to the tradi-
tional communication system, whose inefficiency was the
reason behind OS Bypass.

Taking into account the number of lines of code that are
needed to make a library conform to the standard, one could
conclude that are big differences between the low level li-
braries. But by analyzing the non-portable code of the im-
plementations, one can realize that it deals mostly with the
message queues and the operations that manipulates them
(registering, receiving and cancelling) and operating system
functionalities (memory management and DMA).

However, MPI programs are not the only ones which
need queue management, and therefore it should not be a
responsibility of the implementation. This resource is re-
quired by most applications and should be provided by the
low level libraries. But this resource is often provided by
middleware, because the queues must be organized by the
MPI protocol header, in order to ensure that no message will
ever be mistaken.

Those libraries should be generic and support any higher
layers’ protocols, and so they do not handle the headers. The
queue system is dependent on the headers, and so the low
level libraries do not handle them.

However, this design decision enforces the higher level
libraries, or even the applications, to inflate their code with
functionality that are not their responsibility. Each library

1 those numbers were obtained by analyzing the source code of MPICH-
GM



must implement its own queues, that results in duplicate
code among the libraries. In this paper, we show that it is
possible to develop a communication system which han-
dles the higher layers protocol headers but that is generic,
based in recent software engineering techniques. We also
show that this change can greatly reduce the size of a MPI
implementation and other libraries, respecting the interface
and behavior stated by the standard and achieving similar
performance. Indeed, we do not provide a middleware li-
brary, but just the essence of MPI: “The Message Passing
Interface Standard”.

This paper is organized in this manner: Section 2 de-
scribes the message queue system emploied in most MPI
implementations. In Section 3 the architecture of a tradi-
tional communication system is depicted. In Section 4 the
Communication System Based on Generic Programming is
presented. A MPI implementation using this communica-
tion system is presented in section 5. And Section 6 con-
cludes.

2. The Message Queue System

The MPI standard states that the delivery of messages
should be ordered according to the headers of the messages.
As a result of this, most implementations use a queue sys-
tem where arriving messages are stored until they are re-
quested by the application. The queue system used by most
implementations has been described by O’Carrol et al [5].
The set comprises two send queues and two receive queues.

The receive queues are expected and unexpected. The ex-
pected queue is used to store the messages that have already
been requested by the user through the receive calls (imme-
diate or blocking). The messages have the header that iden-
tifies them and the address of the buffer where the contents
should be stored. The unexpected queue is used to store
the messages that have already arrived from the network,
but that have not been requested by the user yet. When a
message arrives from the network, a matching header is
searched for in the expected queue. If the search is posi-
tive, the content is copied to the buffer of the message and
the related communication is completed. If it is negative,
the contents are stored in a temporary buffer and the mes-
sage is stored in the unexpected queue, as illustrated in Fig-
ure 2. When a receive call is posted, the unexpected queue
is searched for a matching message. If it is found, the com-
munication is completed. Otherwise, the requested message
is stored in the expected queue, as illustrated by Figure 2.

The send queues are necessary in order to provide ren-
dezvous communication. When an unexpected message ar-
rives from the network, a temporary buffer is necessary to
store the contents until the receive call is posted, resulting
in an extra memory copy. This memory copy can be a per-
formance hazard when the message is large. In those cases,

Message
Arriving

Unexpected
Queue

if found in
Expected

If not found

User
Buffer

Figure 1. Flow of data when a messages ar-
rives

if found in
Unexpected

Copy Message

User Buffer
to the

If not found

Expected
Queue

Expected Message
Header

Figure 2. Flow of data on a receive operation



if Rendezvous
is used

if Rendezvous
is not used

Send at
Once

Sending
Message Queue

Unrequested

requested
if not

if requested

Figure 3. Flow of data on a send operation

only the header of the message is sent at once, and the con-
tents are kept at the sender side until they are requested by
the receiver. They will be requested only when a matching
receive call is posted, and the user buffer is already known.
Thus, the extra memory copy is avoided. If the request for
a message arrives before the send call is posted, the con-
tents are sent at once with the header. In order to provided
this kind of communication, two send queues are necessary.

Those send queues are requested and unrequested, and
they are analogous to the receive queues. Requested store
the requests for messages whose send call has not been
posted yet, and whose contents should be sent at once. Un-
requested store the contents of messages whose header has
already been sent, but that have not been requested. When
a send operation is called and rendezvous should be used,
the requested queue is searched for a matching request. If it
is found, the contents are sent immediately. Otherwise, the
contents are stored in the unrequested queue. When a re-
quest arrives from the network, the unrequested queue is
searched for a matching message. If the search is positive,
the contents are sent. Otherwise, the request is kept in the
requested queue. This procedure is illustrated in Figure 2.

As one can realize, the queue system is important in send
or receive operations. Its handling should be done by the
underlying communication systems, because ordering and
rendezvous are functionalities that are provided by most
message passing systems. However, since the queues are or-
ganized by the headers of the application protocol (MPI),
they are often handled by the MPI implementation .

3. Traditional Communication Systems

In order to exemplify traditional communication sys-
tems, The GM message passing system and the MPI im-
plementation based on it (MPICH-GM) are going to
be described. Those libraries have been chosen be-
cause they are the combination most used on Myrinet net-
works, which have been used in our studies. Firstly, GM
will be briefly presented. Secondly, the multi-layered ar-
chitecture of MPICH will be described. At last, the layer of
MPICH that deals with GM will be described also.

GM [4] is the low level message passing system for
Myrinet network supplied by its manufacturer, Myricom.
Its design goals include: low CPU overhead, portability, low
latency and high bandwidth. GM provides reliable ordered
delivery in the presence of network faults. It bypasses the
operating system in order to reduce the latency of messages.
GM provides data link (OSI layer 2) functionality through
a set of send and receive functions.

An adaptation of MPICH over GM is also provided.
MPICH [3] is a portable MPI implementation. It has ports
for many low level communication systems. Its architecture
is organized in three layers: the Channel Interface, the Ab-
stract Device Interface (ADI) and the Device Independent
Layer. The Channel Interface is a set of five simple data link
functions, that are sufficient to port MPICH (but the perfor-
mance is probably not optimal). The ADI provides a set of
more than forty functions, that handle MPI point-to-point
communication, except for data type handling. The Device
Independent Layer handles collective communication, data
type handling and any functionality that is not based on the
communication system. The collective operations are based
on the point to point functions so that they are portable, but
one may override their implementations.

Most ports of MPICH start by providing a Channel Inter-
face and using a template ADI based on it. The ADI is fur-
ther customized in order to optimize the implementation.
The ADI handles the message queue system and any func-
tionality that is based on it, such as immediate communica-
tion. The port of MPICH over GM is just an ADI. The ADI
handles the queue system, which is organized by the MPI
header. When a receive function is called, it is registered on
the expected message queue. When a message arrives from
the network, it’s header is compared to the header of each
message in the expected queue. When a match is found, the
related operation is completed.

Since the queue system must know the header of the ap-
plication protocol (MPI) it must be handled in the MPI im-
plementation. However, that implies that much functional-
ity that is shared by most communication system (such as
immediate communication) must be provided by the imple-
mentation, even when they are also provided by the lower
level libraries. If the queue system could be handled by the



lower level libraries, then most of the functionality of an
ADI could be handled by them also and a MPI implemen-
tation would just be a thin layer between two different pro-
gramming interfaces.

4. A Communication System Based on
Generic Programming

As presented in the previous sections, most of the func-
tionality of an ADI is dependent on the message queue sys-
tem. That functionality must be provided by the MPI imple-
mentations because the lower level libraries does not handle
MPI headers in order to remain generic and support other
protocols as well. In this section, a new communication sys-
tem which can manage the queue system is presented.

The proposed communication system is based on a com-
munication proposed by Fröhlich for the EPOS operating
system [2]. In this system, there are 3 main components:
Envelope, Communicator and Network. Envelope is an ab-
straction for the messages, Communicator handles transport
layer functionality and Network is an abstraction for the un-
derlying network (Myrinet in our experiments). The system
is family-based [6] and each member of a family has a dif-
ferent level of functionality. For instance, there are a Typed
Envelope for heterogeneous networks and an Untyped Enve-
lope for homogeneous networks. The appropriate Envelope
represent the class, so that data conversion is only provided
if needed, but that does not affect any other component of
the system. Each member of the Communicator family rep-
resents a different level of transport functionality: ordered
delivery, reliable delivery, etc.

The EPOS communication system is highly config-
urable, however as originally proposed by Fröhlich, it does
not handle the upper layer’s protocol headers, and thus can-
not handle the queue system. However, we were able to find
that the Communicator component can handle the queues
if the system has another abstraction: the Header compo-
nent.

4.1. The Header Component

The communication system requires that a class repre-
sents the header of the application protocol, and that it real-
izes the interface (abstract class) Header. This interface re-
quires that the operators ==, < and = be provided. The op-
erator == verifies if two headers are equal or different, and
is used in order to define if the messages that arrived from
the network are expected or not. The operator < defines the
ordering of the message queues, in order to get best perfor-
mance. The operator = is used for efficient copying of head-
ers.

There is another restriction on Header classes: they must
be contiguous. Contiguous objects can be duplicated with

simple memory copies, and therefore are more efficient.
This restriction implies that no header class may contain
pointers or references. Headers are often contiguous thus
this obligation is seldom restricts the protocols which can
be used.

4.2. The Template Envelope

Since a header identifies a single message, a header
property is necessary on the Envelope classes. The class
of header must be generic, so any application protocol
can be used. In order to achieve this, the class of header
could be the abstract class Header and the actual class could
be defined on instantiation, using polymorphism. However,
that would imply in the use of virtual methods, which would
result in bad performance. Thus, instead of virtual methods
generic programming will be used through C++ templates
[7]. The class of header is a class parameter of Envelope.
As a consequence, the communication system is generic and
can be used with any application protocol, but the code that
is generated is identical to the one we would get if the class
was defined directly. Therefore, the performance of the sys-
tem should not be affected.

In order to define an Envelope with an specific header,
we only need to instantiate the template. For instance, if
we need to define an envelope for MPI messages we could
write:

typedef Envelope<mpi_header>
mpi_envelope;

When the template is instantiated, the class of header
is defined just like if it was defined directly.

Since the Envelope is an abstraction of the messages, the
communication operations just have to instantiate an enve-
lope, define its properties and pass it to a Communicator
through the operators << (send) and >> (receive). Those
operator return immediately, and the completion of the op-
erations can be verified through the complete property of
Envelope.

The upper layer must define if rendezvous communica-
tion should be used on each message, because each proto-
col has its own policy. But the Communicator should do the
communication, since it handles the queue system. Thus,
the Envelope classes also have a rendezvous property
which defines if this kind of communication should be used.
Its default value is false, so that libraries which do not use
rendezvous may simply ignore this property.

4.3. The Template Communicator

The message queue system must be handled by the Com-
municator component. The queues are sets of template en-



velopes that are identified and ordered by their headers. The
four queues described in section 2 are necessary: expected,
unexpected, requested and unrequested. Those queues are
instances of the Envelope queue class, which has the header
as a class parameter.

The queues are properties of the Communicator, and thus
it should also has the header as its class parameter. This im-
ply in a restriction: the system can handle only one proto-
col a time. If more than one protocol is necessary, the user
must disable the queue management on the Communicator
and handle them himself. This restriction is seldom a prob-
lem in high performance environment, where it is common
that only a protocol (often MPI) is used at a time.

By being a template, the Communicator component can
be adapted to the header of the application protocol and han-
dle the queues, relieving the upper layers. Any functional-
ity which was handled in the upper layers because of the
queues may be handled by the communication system. For
instance, the immediate communication may be provided
by this system. The immediate receive operation just regis-
ter the header of the message in the expected queue, and the
immediate send just register the message in the unrequested
queue if it cannot be sent. Cancelling a message is just re-
moving it from all the queues of the system. By having the
header as a parameter, the Communicator can provide those
operations. A comparison between the functionalities pro-
vided by the presented communication system and the tra-
ditional ones is shown in figure 4.3.

Besides the complexity of its functions, the interface of
the Communicator remains simple. It has only three meth-
ods: << sends an envelope, >> receives an envelope and
check_messages verifies if any message has arrived
on the network. When a receive (>>) is called, the sys-
tem compares the header of the envelope with those on the
queues, and when a matching header (==) is found, its con-
tent is stored in the buffer property of the Envelope. The
check_messages method is called in order to complete
immediate operations: it verifies if any message has arrived
from the network device. If a message has arrived it search
the expected queue for a matching message. If one is found,
it is completed. Otherwise the arriving message is stored in
the unexpected queue.

5. A Thin MPI Implementation

In the previous section a communication system based
on generic programming was presented. In order to validate
the system a MPI implementation has been developed over
it. Since most of the functionality is handled by the commu-
nication system, MPI has been implemented as a thin layer.
In fact, the implementation was so smaller and simpler than
the traditional ones that the effort required to develop it en-

API Translation

Ordering

Queue Handling

Rendezvous

Low level communication

API Translation

MPI Implementation

Communication System

Ordering

Queue Handling

Rendezvous

Low level communication

Communication System Based

on Generic Programming

MPI Implementation

Communication System

Traditional Communication Systems

Figure 4. Comparison between the function-
alities of the communication system based
on generic programming and the traditional
ones



tirely was smaller than just adapting another portable im-
plementation, such as MPICH [3].

In this paper only the implementation of the MPI point to
point operations is described. The collective operations are
implemented over the point to point ones and thus they do
not depend directly on the underlying communication sys-
tem (MPICH handles the collective communication in the
Device Independent Layer).

MPI offers four communication modes: standard,
buffered, synchronous and ready. They differ only in the
use of rendezvous. If the mode is standard or buffered, ren-
dezvous is used only for long messages. If it is ready, it is
never used and if it is synchronous, it is always used. This
behavior is suggested by the MPI standard [1]. The prop-
erty rendezvous of the envelope is set if this kind of
communication should be used, and the Communica-
tor will proceed accordingly.

For each communication mode, there are an immediate
and a blocking functions. Since the Communicator oper-
ators return immediately, the immediate functions are al-
ready supported: they just have to register the related opera-
tion on the queues. The blocking functions do the same and
call check_messages in a loop. They return when the
operation is completed (the complete property of the en-
velope is true).

5.1. The MPI Header

The MPI standard states that four fields identify a mes-
sage:

• context;

• source;

• destination;

• tag.

Those four fields compose the header of a MPI mes-
sage, which is represented by the mpi_header class. This
class realizes the Header interface, and thus can be used
as a class parameter for the Envelope classes. The MPI
standard also specifies that there are two wild card values
for the properties: MPI_ANY_SOURCE for source and
MPI_ANY_TAG for tag, which define that those proper-
ties should not been taken into account when headers are
compared. The operator == is used to compare two head-
ers, so it is aware of the wild cards. Through the class
mpi_header, the MPI protocol can be used with the com-
munication system based on generic programming.

Message Sending
In order to send a message, the implementation instanti-

ates an Envelope and passes it to a Communicator through
the << operator. The following code is the implementation
of the MPI_Send function and is presented in order to il-
lustrate the simplicity of the implementation.

int MPI_Send(void *buf, int count
MPI_Datatype datatype,
int dest, int tag,
MPI_Comm comm) {

Envelope<mpi_header> message(
mpi_header(comm, MPI_rank,

dest, tag),
buf, count, rank2node_id(dest));

return ((*epos_comm) << message);
}

5.2. Message Receipt

The receive operation is similar to the send one. A Enve-
lope is instantiated and initialized with a header that iden-
tifies the expected message and the buffer that should store
the contents. The Envelope is passed to a Communicator
through the >> operator. If the operation is immediate,
the Envelope will be stored in the expected queue. It will
be completed when the message arrive from the network
and the check_messages method of the Communica-
tor is called. The MPI_Wait and MPI_Test functions
test the complete property of the Envelope to verify if
the operation is complete. If the function is blocking, then
MPI_Wait is called just after the operator >>. The imple-
mentation of the MPI_Recv function is listed in the fol-
lowing code:

typedef Envelope<mpi_header>
*MPI_Request;

const MPI_Request MPI_REQUEST_NULL = 0;

int MPI_Recv(void *buf, int const count,
MPI_Datatype const datatype,
int const source, int const tag,
MPI_Comm const comm,
MPI_Status * const status) {

message_t message(
mpi_header(comm, source, MPI_rank,

tag),
buf, count, rank2node_id(source));

MPI_Request request(&message);

(*epos_comm) >> message;

MPI_Wait(&request, status);

return 0;
}



int MPI_Wait(MPI_Request *request,
MPI_Status *status) {

if (*request==MPI_REQUEST_NULL)
return 0;

while (!(*request)->complete)
epos_comm->check_messages();

set_status(status, *request, 0);
free_request(*request);

return 0;
}

5.3. Comparison

The advantages of the communication system based on
generic programming can be seen by analyzing the source
code of the MPI implementation. No queue handling is
done, and the implementation just does its job: it translates
one API to another. This MPI implementation is thin be-
cause it does not do the job of the communication system.
The ADI of MPICH over GM has more than 30.000 lines
of code. The implementation that has been presented has
less than 2.000 lines, and offers exactly the same function-
ality and interface.

In figure 2 a performance comparison between MPICH
over GM and the presented MPI implementation is shown.
The figure shows the latency of messages from size 1 to
4096 bytes. The performance was similar on both imple-
mentations, proving that the flexible architecture of the
communication system based on generic programming does
not implies in performance overhead.

However, the code size generated for the presented im-
plementation is quite smaller. Linking a simple MPI
ping-pong program against our implementation gener-
ated a 20KB binary and linking the same code with
MPICH-GM generated a 400KB binary with the same
functionality.

6. Conclusion

Traditional communication systems are organized ac-
cording to rigid architectures, where each layer may han-
dle only the lower layers’ protocols, but not the upper lay-
ers’. Since they cannot handle the upper layer’s protocol
they cannot manage the queues, and thus some of the com-
plexity of communication is taken care by middleware li-
braries or even by the applications.

A high performance communication system based on
generic programming is presented on this paper. The system
is implemented using C++ templates which has the appli-
cation protocol’s header as a class parameter. With this fea-

10
20
30
40
50
60
70
80
90

100

1 4 16 64 256 1024 4096
Message size

MPICH-GM

+ + + + + + +
+

+
+

+

+

+

+

Communicator

Figure 5. Latency comparison

ture, the message queues which are organized by the header,
can be handled by the communication system. As a result,
many communication functionalities that are dependent on
the queues, such as rendezvous and immediate communica-
tion, can be offered by the communication system. There-
fore, it plays exactly the role of this kind of system: relieves
the upper layers and the applications from communication
code.

This communication system has a limitation: since the
Communicator adapts itself to the protocol of the upper
layer, it requires that only one protocol be used at a time.
This limitation is seldom a restriction on high performance
environments, where often only one protocol (often MPI) is
used at a time. This is specially the case when the EPOS op-
erating system is being used, since it is designed for dedi-
cated systems.

A MPI implementation over this communication system
has also been developed. Thanks to the advanced resources
and the simple interface of the system, the implementation
require little effort and few lines of code. In fact, devel-
oping an entire implementation was easier and faster than
just adapting an already existent portable implementation,
thus demonstrating that the presented communication sys-
tem has advantages over the conventional ones. The point-
to-point communication functions have very few code: just
enable the required resources and translate from the MPI in-
terfaces to the systems’ one. Therefore, MPI has been im-
plemented just as its essence: “The Message Passing Inter-
face Standard”.

References

[1] M. P. I. Forum. MPI: A Message-Passing Interface Standard,
1995. version 1.1.



[2] A. A. M. Fröhlich. Application-Oriented Operating Systems.
PhD thesis, GMD-FIRST, June 2001.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, Sept. 1996.

[4] I. Myricom. The gm message passing system, 1999.
[5] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa. The de-

sign and implementation of zero copy mpi using commod-
ity hardware with a high performance network. In Proceed-
ings of the 12th international conference on Supercomputing,
pages 243–250. ACM Press, 1998.

[6] D. L. Parnas. On the Design and Development of Program
Families. IEEE Transactions on Software Engineering, SE-
2(1):1–9, Mar. 1976.

[7] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 3 edition, June 1997.


