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Abstract

Developments in Wireless Sensor Networks (WSN)
hardware have led to a diversity of sensing devices, rang-
ing from simple, micro-controlled boards to complex,
highly integrated sensor-transceiver ICs. Given this di-
versity, the lack of proper abstraction and encapsulation
mechanisms at the operating system level often forces de-
velopers to reimplement their sensing applications when-
ever a different sensor, radio or processor is deployed. In
this paper we introduce a novel strategy for abstracting
Wireless Sensor Networks Hardware, implemented for the
EPOS operating system. It consists in providing applica-
tion programmers with a high level interface for sensing
components, that can latter be bound to pre-existing com-
ponents that are adapted on demand at system generation
time to fulfill application requirements, thus enabling pro-
grammers to code portable sensing applications in spite of
the hardware diversity and without significant overhead.

1 Introduction

Wireless Sensor Networks (WSN) hardware is, by
its very own nature, heterogeneous and modular.
Application-specific requirements drive the entire hard-
ware design, from processing capabilities to radio band-
width and sensor modules. Even in a same family of sen-
sor nodes (e.g. the Berkeley motes family [7, 11]) one
can find architectural differences that cannot be trivially
abstracted. In this scenario, a sensor application devel-
oped for a given platform will seldom be portable to a dif-
ferent one, unless the run-time support systems on those
platforms deliver mechanisms that abstract and encapsu-
late the sensor platform in an adequate manner. Indeed,
a proper abstraction of sensor platforms becomes a key
issue in the face of modern SOC (system-on-a-chip) solu-
tions, which integrate micro-controller, radio and sensor
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modules on single ICs that can usually be configured ac-
cording to user demands [2, 6, 12]. Table 1 presents char-
acteristics of some representative WSN hardware modules
in use today. Architectural differences aside, sensor mod-
ules (e.g. temperature, light, motion sensors) present an
even wider range of variability. Sensor modules present-
ing the same functionality often vary in their access inter-
face, operational characteristics and parameters.

A properly designed run-time support system could
free application programmers from such architectural de-
pendencies and promote application portability among
different sensing platforms. Given a sensing application
implemented for a certain platform, there is no strong rea-
son why it should not be reused with another platform that
fulfills its requirements (e.g. presence of a certain sensor,
non-volatile memory capabilities, etc.). For instance, an
operating system could deliver a temperature sensor ab-
straction that would be instantiated by applications giving
a range and scale (e.g. linear, logarithmic, Poisson, user-
defined, etc). The system would thus ensure proper be-
havior independently from the physical sensor that exists
in the platform.

In the following sections we present current strategies
for handling heterogeneity in Wireless Sensor Networks
and introduce a novel model based on the Application Ori-
ented System Design (AOSD) methodology [3]. AOSD in-
troduces the concepts of hardware mediators and system
abstractions that implement scenario independent system
constructs. These abstractions are exported to the applica-
tion through inflated interfaces and adapted according to
the applications needs through scenario adapters. We in-
troduce the model of sensing abstractions used in EPOS,
an experimental application oriented operating system.
We then show that this model is capable of properly en-
capsulating WSN hardware heterogeneity with virtually
no overhead and producing a very small system footprint.
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Mote
Type Rene Mica2 iMote btNode Telos
Year 2000 2003 2003 2003 2004
Institution UCB UCB Intel ETHZ UCB
CPU
µcontroller AVR AVR ARM AVR MSP430
Clock 4 Mhz 8 Mhz 12 Mhz 8 Mhz 8 Mhz
Program Memory 8 KB 128 KB 512 KB 128 KB 60 KB
RAM 0.5 KB 4 KB 64 KB 4 KB 10 KB
Radio Communication
Type RFM Chipcon Bluetooth Bluetooth 802.15.4
Frequency (Mhz) 916 433/916 2400 2400 2400
Rate (kbps) 10 40 700 700 250

Table 1. Typical Wireless Sensor Networks Hardware

2 Related Work

Most of the current effort in development of operat-
ing systems and hardware abstraction for Wireless Sensor
Networks is focused on TinyOS [7]. Initially developed
by the University of California at Berkeley and now an
open-source project maintained by several institutions, it
is the most widely used OS for Wireless Sensor Networks.
TinyOS was written in NesC [4], a high-level program-
ming language that emulates the syntax and functionality
of hardware description languages, and provides compo-
nents for communication, thread coordination, and, of our
special interest, hardware abstraction.

Nonetheless, while implementing a complete and func-
tional hardware abstraction layer, the original TinyOS sys-
tem presented a series of structural problems that hin-
dered application portability. Each hardware platform had
a complete and separate HAL implementation. While it
is true that architectural differences between platforms
may require separate implementations, system interfaces
should remain uniform whenever possible. The original
TinyOS did not provide a uniform interface for most high
level system abstractions (e.g. sensors, timers, etc.), thus
forcing the application programmer to understand the nuts
and bolts of the underlying hardware platform and com-
promising application portability between platforms.

TinyOS tried to solve these problems by introducing a
three-tiered hardware abstraction architecture, comprised
by a Hardware Presentation Layer, a Hardware Adapta-
tion Layer and a Hardware Interface Layer [5]. The Hard-
ware Presentation Layer is placed directly over the under-
lying hardware, and presents the hardware to the operating
system. Components in the Hardware Presentation Layer
are unique for each device they present, but may share
a common structure. The Hardware Adaptation Layer
groups the hardware-specific components into domain-
specific models, such as Alarm or ADC Channel. The
Hardware Adaptation Layer provides the “best” possible
abstraction in terms of effective resource usage, but also
tries not to hinder application portability. The Hardware

Interface Layer uses the adapted components to imple-
ment platform-independent abstractions. The TinyOS ap-
plication developer may choose to use any of the available
interface levels, trading off application portability and ef-
ficient resource usage.

The Mantis Operating System [1], developed by the
University of Colorado, aims at making the task of pro-
gramming a sensor network as close as possible to the one
of programming a PC. Thus, Mantis OS uses the classi-
cal model of multi-layered operating systems, which in-
cludes multi-threading, preemptive scheduling, and a net-
work stack. Hardware is abstracted through a UNIX-like
API of device drivers, with a monolithic hardware abstrac-
tion layer.

While it is true that the classical OS structure used in
Mantis OS may lower the learning curve for novice sen-
sor network developers familiar with an UNIX-like sys-
tem, it is uncertain whether this model translates well to
such resource-restricted platforms as sensor nodes.

Higher level abstractions often rely on Virtual Ma-
chines that abstract the physical hardware into an ideal
Virtual Architecture. An underlying translation mech-
anism ensures correct operation, regardless of specific
physical hardware platform details. Thus even highly effi-
cient Virtual Machine implementations may introduce ex-
cessive overhead into the system. This is the approach
followed by Maté [9] a project from the University of Cal-
ifornia at Berkeley. Maté introduces a high-level inter-
face that allows programs to be replicated throughout the
network, reprogramming the nodes in an energy-efficient
way. It also provides a safe execution environment, imple-
menting a user/kernel boundary on devices that lack hard-
ware protection mechanisms. In spite of its advantages,
Maté suffers from the problems inherent to virtual ma-
chines, which are especially critical for highly constrained
hardware such as sensor nodes, as practical high level ab-
stractions for Wireless Sensor Networks hardware must
make efficient use of the sensor node’s low memory, pro-
cessing and energy capabilities.



3 Application Oriented System Design

In this section we present the concepts of system ab-
stractions and hardware mediators in the context of Ap-
plication Oriented System Design as efficient, high-level,
reusable hardware abstraction components for sensor net-
works. Application Oriented System Design (AOSD) [3]
was proposed as a multi-paradigm methodology for sys-
tem software design that makes use of several program-
ming and software engineering techniques that can be
combined in order to generate run-time support systems
configured and optimized for specific applications.

The EPOS operating system was implemented follow-
ing AOSD techniques. EPOS aims at allowing program-
mers to write architecture-independent applications, and,
through automated application analysis, building run-time
support that complies all the resources that specific ap-
plication needs, and nothing else. In order to achieve
these goals, EPOS relies on the concepts of Inflated In-
terfaces, System Abstractions, Scenario Aspects, Config-
urable Features, and Hardware Mediators. EPOS makes
use of Static Meta programming and Aspect-Oriented Pro-
gramming techniques to implement software components,
thus conferring them a significant advantage over the clas-
sic approaches of VMs and HALs. From the definition of
the scenario in which the component will be deployed, it
is possible to adapt it to perform accordingly without com-
promising its interface nor aggregating useless code.

3.1 Hardware Mediators
Hardware mediators are software constructs that me-

diate the interaction between operating system compo-
nents, called system abstractions, and hardware compo-
nents. The main idea behind hardware mediators is not
building universal hardware abstraction layers and virtual
machines, but sustaining the “interface contract” between
system and machine. Differently from ordinary HALs,
hardware mediators do not build a monolithic layer encap-
sulating the resources available in the hardware platform.
Each hardware component is handled via its own media-
tor, thus granting the portability of abstractions that use
it without creating unnecessary dependencies. Hardware
mediators are intended to be mostly metaprogrammed and
therefore dissolve themselves in the abstractions as soon
as the interface contract is met. In other words, a hardware
mediator delivers the functionality of the corresponding
hardware component through a system-oriented interface.

Hardware mediators are organized in families whose
members represent the significant entities in the domain.
For instance, a family of CPU mediators would feature
members such as ARM, AVR8, and PPC. A part of the
UART mediator for the AVR processor is presented in fig-
ure 1. This example shows how the system can abstract
architecture specific issues such as assembly instructions
and register addresses. The AVR UART default construc-
tor configures the UART with 9600bps 8N1 (there are
other constructors to allow the user to configure this de-

class AVR8_UART: public UART_Common { // ...
public:

AVR8_UART() {
AVR8::out8(UBRR0H,DEFAULT_BR_H);
AVR8::out8(UBRR0L,DEFAULT_BR_L);
AVR8::out8(UCSR0C,UCSZ1 | UCSZ0);
AVR8::out8(UCSR0B,TXEN | RXEN); }

˜AVR8_UART(){
AVR8::out8(UCSR0B,˜TXEN & ˜RXEN); }

};

Figure 1. The AVR UART hardware mediator

vice differently). This device is configured through the
UART registers. To allow the portability of the UART me-
diator to different AVR cores this implementation uses in
and out methods from de CPU mediator (AVR8), which
abstracts the assembly language operations responsible
for reading and writing to registers in IO ports into high
level C++ methods without any overhead.

3.2 System Abstractions and Inflated Interfaces
AOSD relies on Scenario-independent system abstrac-

tions to implement the operating system components.
These components define the system functionalities, and
are strongly configurable. System Abstractions are col-
lected from an Application-Oriented Domain Analysis
and Decomposition process. This analysis process is sim-
ilar to object-oriented decomposition. System abstrac-
tions are organized according to the Family-Based De-
sign paradigm, and have their commonalities and variabil-
ities explored through different class hierarchies. An in-
flated interface exports the family as a super component,
that implements all responsibilities assigned to the family.
This component is derived from the interfaces of individ-
ual family members, and realized through their implemen-
tations. In EPOS, the system framework automatically se-
lects interface realizations, taking into account the target
hardware configuration and a cost model for components.

3.3 Scenario Aspects and Configurable Features
In AOSD, non-functional aspects and cross-cutting

properties are factored out as scenario aspects that can
be applied to family members as required. For instance,
families like UART must often operate in exclusive-access
mode. This could be achieved by applying a share-control
aspect to the families. Configurable features, on the other
hand, designate features of mediators that can be switched
on and off according to the requirements dictated by ab-
stractions. A configurable feature is not restricted to a flag
indicating whether a preexisting hardware feature must be
activated or not. Usually, it also incorporates a Generic
Programmed [10] implementation of the algorithms and
data structures that are necessary to implement that feature
when the hardware itself does not provide it. An example
of configurable feature is the generation of CRC codes in
a RF Transceiver mediator.
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Figure 2. Set of relevant sensing components.

4 EPOS Sensing Components

In order to preserve the portability of its software com-
ponents, EPOS relies on hardware mediators. In princi-
ple, none of EPOS’s abstractions interact directly with the
hardware, utilizing the corresponding hardware mediators
instead. In this way, a context switch done in the realm
of a Thread abstraction concerns mainly the decision of
which thread should occupy the CPU next, leaving the op-
eration of saving and restoring the CPU’s context to the
corresponding mediator. This section describes EPOS’s
sensing subsystem, which provides application program-
mers with Sentient abstractions that use Sensor mediators
to implement platform-independent sensing components.

4.1 Sensors and Sentients
There are several different architectures of sensors in

use today, which makes it a hard job to define a common
way to access such devices. These devices range from
simple, digital integrated circuits to complex, usually ana-
log devices.

Devices in the first category are usually implemented
over a serial bus (e.g. I2C, SPI). In this kind of sensors,
the data acquisition process is initiated by a specific signal
or by read and write operations. Another characteristic of
these sensors is that there is a regular time period in which
new values are sensed. Examples of this kind of sensors
are the Texas TMP family of temperature sensors, most
Honeywell Magnetometers, the STM Accelerometers and
most A/D converters. On the other end, we have very spe-
cific and, generally, analog circuits. Examples of this cate-
gory of sensors are the Berkley’s Mica Sensor Board light
and temperature sensors. These sensors share the same

analog circuit, making its use and management a complex
issue. This circuit has operation and timing constraints,
and is composed by two thermistors and one photo resis-
tor, which are managed through 3 GPIO pins, and deliver
their results to the same A/D pin. Another example is the
Mica Magnetometer. It is implemented by a complex ana-
log and digital circuit and in spite of being configured by
a simple I2C potentiometer, it has an analog output and
complex semantics and timing characteristics.

Dispite the diversity, it is possible to affirm that sensor
operation does follow a regular pattern. This pattern is
constituted by an start sensing command, followed by an
optional configuration phase. Once configured, the data
acquisition cycle can begin, always respecting the sensor’s
latency. The sensing routine can then be stopped, or may
be kept in a wait acquisition / get data loop.

In this context, EPOS defines two entities to encapsu-
late and, along with other abstractions and mediators, ab-
stract sensor devices: Sensor and Sentient (figure 2).
These entities make use of the Bus and ADC components
to build a comfortable programming interface for sens-
ing application development. The Bus mediator family of
components implements a uniform way to access periph-
eral devices. The ADC family of analog-to-digital convert-
ers mediators also implements an uniform access to such
devices. These two basic mediators’ families are the key
to a modular implementation of the EPOS’s sensing sub-
system, for they allow the Sensor family of mediators
implement highly configurable and reusable components.
Some of the mediators for the Sensor family are also
shown in figure 2. Every other implementation just needs
to extend the Sensor component and make its hardware
dependent implementation.



/* TinyOS Sensing Application */
configuration SenseToUART {}
implementation {

components Main, SenseToInt, IntToUART, TimerC, DemoSensorC as Sensor;
Main.StdControl -> SenseToInt;
Main.StdControl -> IntToUART;
SenseToInt.Timer -> TimerC.Timer[unique("Timer")];
SenseToInt.TimerControl -> TimerC;
SenseToInt.ADC -> Sensor;
SenseToInt.ADCControl -> Sensor;
SenseToInt.IntOutput -> IntToUART;

}

/* Mantis Sensing Application */
#include <inttypes.h>
#include "led.h"
#include "dev.h"
#include "com.h"
static comBuf send_pkt;
void start (void) {

send_pkt.size=1;
while(1) {

dev_read(DEV_MICA2_TEMP, &send_pkt.data[0],1);
com_send(IFACE_SERIAL, &send_pkt);

}
}

/* EPOS Sensing Application */

#include <sentient.h>
#include <uart.h>

Temperature_Sentient t;
UART u;

int main()
{

while(1)
u.send_byte(t.read());

}

Figure 3. Sample sensing applications

The Sensor family of hardware mediators allows the
design of a higher-level, architecture-independent family
of abstractions, which can be used by applications with-
out affecting its portability. The Sentient family is
comprised by software components that aims in abstract-
ing the sensors finality, and not its implementation (which
is considered in the Sensor mediator). Example mem-
bers of this family are the Temperature Sentient
and the Light Sentient components. These com-
ponents implement not only transparent access for sen-
sors, but also some functionalities such as unit conversion,
threshold comparison of results, and data logging, which
are mapped as configurable features or aspects. Once the
application uses a member of the Sentient family, it
is up to the EPOS framework composition rules to main-
tain the sensing sub-system coherence, by granting that,
for example, the Temperature Sentient abstraction
will use an available temperature Sensor mediator. This
is ensured by the system configuration and generation pro-
cess, which takes into account the application analysis re-
sults and the hardware platform description [13].

5 Evaluation

In order to test the expressibility, portability and cost
of the EPOS sensing subsystem, we implemented a sim-
ple sensing application using three different operating sys-
tems: TinyOS, Mantis and EPOS. The application in ques-
tion implements a loop that constantly reads data from a
sensor and redirects the acquired data to a UART. When-
ever it was necessary to implement architecture-dependent

code, the Berkeley Mica2 mote [8] was considered as the
target platform. Figure 3 presents the implementation of
this application for the three analyzed operating systems.

The application for TinyOS was written in the NesC
programming language, and its implementation consists
simply in connecting inputs and outputs of interfaces
(ADC and UART, in this particular case). Had it been nec-
essary, the implementation of algorithms could be done in
NesC, with C-like syntax. The application for Mantis was
written in C, including the headers defining Mantis’s de-
vice access and communication APIs. The application for
EPOS was written in C++, importing the sensing abstrac-
tion and the UART mediator headers.

In the Mica2 platform, the TinyOS system reflects the
hardware design and exports the temperature sensor as
an ADC (in the physical platform this sensor is analog
and is connected to the micro-controller’s ADC). This de-
pendency between hardware and operating system will
certainly bring implications to the application portability
when, for example, it is ported to a platform in which the
temperature sensor is digital and is connected directly to
microcontroler IO pins. Even if the application function-
ality remains the same, it will have to be modified taking
into account the details of the hardware platform in which
it will be executed.

A similar problem occurs in the implementation for
the Mantis operating system. The temperature sensor is
read through a device access function, which takes as
a parameter the physical device the application wishes
to read. Evidently the physical sensor model may vary
from platform to platform, and the application will not be



portable between different platforms, even when it main-
tains the same functionality. This problem could be par-
tially solved in the Mantis through a series of define
statements that would indicate that, for example, in the
Mica platform, the Temperature Sensor symbol de-
notes DEV MICA2 TEMP. Nevertheless, this would still
be an inefficient and inelegant solution, as the dev read
method aggregates code for the reading of every device
available in the platform, even when some of them are not
used by the application.

The implementation for the EPOS system does not
present any dependency from the target hardware, except
for the requirement of an available temperature sensor and
a UART, and is perfectly portable between platforms the
satisfy this requirement. The selection of hardware me-
diators is resolved by the system framework, taking into
consideration the interfaces used by the application and
the target platform specified by the programmer.

All three applications were compiled for the Mica2 as
suggested by the respective system user’s guide. The foot-
print of the resulting executable images (application and
operating system) is presented in table 2. The applica-
tion compiled for the EPOS system presented the smallest
cost in bytes between the three test systems, for both data
memory and code size.

Mantis TinyOS EPOS

.text (bytes) 22486 9990 5522

.data (bytes) 74 16 22

.bss (bytes) 711 358 152

Table 2. Generated application sizes

Evidently, an evaluation based simply in program code
and data sizes is incomplete, but in resource-limited sys-
tems such as sensor nodes, these values are of uttermost
importance. Future evaluations of this work will include
performance and energy-consumption measurements.

6 Conclusions

We discussed the problem of heterogeneity in sensor
networks hardware, and presented a novel technique to
handle application portability in these systems. We used
the concepts of hardware mediators and system abstrac-
tions to model and implement the EPOS sensing subsys-
tem, which allows sensing applications to be ported be-
tween different sensor networks hardware platforms. A
sample sensing application was implemented for the EPOS
operating system, as well for other available operating
systems for sensor networks. The EPOS system presented
the smallest size int terms of code and data size. These
results position EPOS as a very viable alternative for op-
erating systems for sensing devices.
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