
Operating System Support for
Data Acquisition in Sensor Networks

Lucas Francisco Wanner, Arliones Stevert Hoeller Junior,
Augusto Born de Oliveira and Antônio Augusto Fröhlich

Laboratory for Software and Hardware Integration — Federal University of Santa Catarina
PO Box 476 – 88049-900 – Florianópolis, SC, Brazil

{lucas,arliones,augusto,guto}@lisha.ufsc.br

Abstract

Due to modularity and heterogeneity in Wireless Sen-
sor Networks sensing devices, a sensor application devel-
oped for a given platform will seldom be portable to a dif-
ferent one, unless the run-time support systems on those
platforms deliver mechanisms that abstract and encapsu-
late the sensor platform in an adequate manner.

In this article we propose a software/hardware inter-
face that is able to abstract families of sensing devices
in an uniform fashion. We define classes of sensing de-
vices based on their finality (e.g. sensing acceleration,
sensing temperature), and establish a common substrate
for each class. Each individual device in a class is able
to describe itself and its properties, in a similar fashion
to the IEEE 1451 standard sensors transducer electronic
data sheet. A thin software layer adapts individual de-
vices to fit the minimal requirements of its sensor class.
Software-based self-description allows applications to use
individual sensors’ extended characteristics. We show
that this strategy does not incur in excessive overhead,
and presents a significant advantage with relation to solu-
tions found in other operating system for sensor networks.

1 Introduction

Sensors play a key role in embedded systems from
smart appliances to machine monitoring and control. An
electronic sensor responds to stimulus such as light, pres-
sure or motion and generates a measurable signal, which
can be interpreted in order to extract environmental in-
formation. Advances in hardware technology and design
have led to reductions in size, power consumption and cost
for sensing devices. Micro Electro Mechanical Systems
(MEMS) technologies allow mechanical elements, sen-
sors and electronics to be integrated on a common silicon
substrate, enabling autonomous operation of sensing de-
vices. The recent convergence of sensing and low power
wireless communication technologies has enabled the ad-

vent of Wireless Sensor Networks (WSN). In a Wireless
Sensor Network, several sensor nodes, comprised by a set
of analog and digital sensors, a micro-controller, a wire-
less transceiver and batteries, coordinate and exchange in-
formation in order to provide a macroscopic vision of a
given environment.

In a sensor network, application-specific requirements
drive the entire hardware design, from processing capa-
bilities to radio bandwidth and sensor modules, thus re-
quiring the hardware to be modular. However, these re-
quirements have led to a huge variety of hardware com-
ponents, making Wireless Sensor Networks hardware not
only modular, but also heterogeneous. In this scenario,
a sensor application developed for a given platform will
seldom be portable to a different one, unless the run-time
support systems on those platforms deliver mechanisms
that abstract and encapsulate the sensor platform in an
adequate manner. Architectural differences aside, sensor
modules (e.g. temperature, light, motion sensors) present
an even wider range of variability. Sensor modules pre-
senting the same functionality often vary in their access
interface, operational characteristics and parameters.

A properly designed run-time support system could
free application programmers from such architectural de-
pendencies and promote application portability among
different sensing platforms. A high-level sensing subsys-
tem could provide transparent access to families of sens-
ing devices. We propose a software/hardware interface
that is able to abstract families of sensing devices in an
uniform fashion. We define classes of sensing devices
based on their finality, and establish a common substrate
for each class. A thin software layer adapts individual de-
vices to fit the minimal requirements of its sensor class.

This paper follows up on Operating System Support
for Handling Heterogeneity in Wireless Sensor Networks
[11], and explores sensing technologies and related data
acquisition techniques. In the following sections, we in-
troduce the model of sensing abstractions used in EPOS,
an experimental application oriented operating system,
and compare it to other relevant solutions.

1



2 Sensing Components in EPOS

We propose a software/hardware interface that is able
to abstract families of sensing devices in an uniform fash-
ion. We define classes of sensing devices based on their
finality (e.g. sensing acceleration, sensing temperature),
and establish a common substrate for each class. Each in-
dividual device in a class is able to describe itself and its
properties, in a similar fashion to the IEEE 1451 standard
sensors transducer electronic data sheet [8]. A thin soft-
ware layer adapts individual devices (e.g. converts ADC
readings into contextualized values, performs calibration)
to fit the minimal requirements of its sensor class. Thus, a
simple thermistor is exported to an application in the ex-
act same fashion as a complex digital temperature sensor.
Software-based self-description allows applications to use
individual sensors’ extended characteristics.

We implemented this interface for EPOS [3, 10], an
application-oriented operating system. The EPOS system
framework allows software components to be automati-
cally adapted to fulfill the requirements of particular ap-
plications. Thus, an application may use a Thermometer
abstraction, without having to address a particular temper-
ature sensor.

2.1 EPOS Sensing Subsystem
Figure 1 presents a simplified overview of the EPOS

sensing subsystem. Common methods for all sensing
devices are defined by the Sensor Common interface.
The sample() method provides a single sensor, single
channel reading (i.e. enables the device, waits for data
to be ready, reads the sensor, disables the device, and
returns readings converted into pre-determined physical
units). The enable(), disable(), data ready()
and get() methods allow the operating system and ap-
plications to perform fine-grain control over sensor read-
ings (e.g. performing sequential readings, obtaining raw
sensor values). The convert(int v) method may be
used to convert raw sensor readings (e.g. ADC or duty-
cycle outputs) into scientific or engineering units. The
calibrate() method performs a device and platform
specific calibration method, which may require user inter-
action, depending on the sensor.

Each sensor family may specialize the
Sensor Common interface in order to properly abstract
specific family characteristics. The Magnetometer
family may add, for example, method for sampling and
reading different axes. A Thermistor family, on the
other hand, will probably not need to extend the basic
common interface. Each family also defines a specific
Descriptor structure, which defines specific fields for
operation, accuracy, timing, calibration data and physical
units.

Every sensing device implements one of the defined in-
terfaces, and may provide specific methods for calibration,
configuration, and operation. Furthermore, each sensing
device fills a family-specific Descriptor structure with

device-specific values. Default configuration parameters
(e.g. frequency, gain, etc.) for each device are stored in a
configuration traits structure.

Whenever the operating system or an application need
to refer to a sensing device, they may either refer to the
specific device (e.g. MicaSB Temperature) and per-
form device-specific operations, or refer to the device
class (e.g. Temperature Sensor) and restrict to oper-
ations defined by that class. The configuration traits struc-
ture lists all the devices in a given class which are present
in a given system configuration. A statically metapro-
grammed realization of the device class interface aggre-
gates all the devices listed by the configuration traits. This
realization is concrete when all the devices in a class are
of the same type, and polymorphic when different sensor
types are present in a class.

2.2 Sample family of sensing devices: Accelerome-
ters

The Accelerometer family of devices extends the basic
Sensor interface by adding methods for reading differ-
ent sensitivity axes (See figure 1). Specific devices im-
plement the Accelerometer interface fully or partially
(e.g. a 2-axis accelerometer will not implement methods
for the z axis. The family also defines a Descriptor class.
Specific devices may have their own Calibration
structure and user-defined configuration traits.

Actual family realization is performed by a meta-
programmed wrapper. A list of devices is defined for each
machine (e.g. Mica2). If all the devices in the list are of
the same type, the Accelerometer realization will be
concrete. Otherwise, it will be polymorphic. The device
list also defines the order for the Accelerometer(int
unit) constructor.

Applications may either use the Accelerometer
realization or a specific device implementation. In the
first case, the application programmer is restricted to
the methods defined by the general class. Device-
specific methods (e.g. configuration functions) are only
available through the actual device implementation (e.g.
ADXL202). However, the application may use the gen-
eral Accelerometer class and use the Descriptor
structure in order to perform device-specific operations.

3 Evaluation

In order to illustrate cases of use of our sensor abstrac-
tion strategy, we present in this section a series of appli-
cation configurations and their respective costs in terms
of code size and memory usage. We implemented these
applications for the Mica2 [6] platform, using standard
Mica Sensor Board [2] sensors. In all our configurations,
a remote sensor node continually sends sensor data mes-
sages to a serial gateway connected to a PC. We used a
B-MAC [9] derivate for medium access control, with a
global addressing scheme and fixed-size data packets.

2



Figure 1. Overview of the EPOS Sensing Subsystem.

Basic Configuration

Figure 2 presents our basic sensing application configura-
tion. In this application, a remote node continuously sam-
ples data from two axes of a Null Sensor (a software
sensor that always samples the same value) and broadcasts
it to the network.

1 struct Msg {
2 int x,y;
3 };
4
5 int main()
6 {
7 Msg msg;
8 NIC nic;
9 Null_Sensor sensor;

10
11 while(1) {
12 msg.x = sensor.sample_x();
13 msg.y = sensor.sample_y();
14 nic.send(NIC::BROADCAST, 0,
15 &msg, sizeof(msg));
16 }
17 }

Figure 2. Basic Application Configuration

This application was compiled and linked with the
EPOS operating system using GCC 4.0.2 for AVR. The re-
sulting object code used 256 bytes of data memory (.data
+ .bss) and 10644 bytes of code memory (.text). These
memory footprint values constitute the base cost for com-
munication, time coordination and scheduling for EPOS
in the Mica2 platform.

Actual Sensor Sampling

In order to illustrate base cost for sampling an actual sens-
ing device, we changed the basic configuration to sam-
ple data from an ADXL202 accelerometer. The imple-
mentation for this sensor uses the device’s analog out-
put, which is sampled through an ADC Channel. In
this configuration, line 9 of figure 2 is replaced with
ADXL202 sensor;. The resulting object code for this
application added 1 byte of data memory and 188 bytes
of code memory to the base application configuration.
This implementation deals directly with the device im-
plementation (ADXL202), as opposed to the device class
Accelerometer. This allows specific device methods
to be used (e.g. specific calibration method), but hinders
application portability.

Using Device Classes

In order to evaluate the overhead of addressing device
classes instead of specific devices, we replaced line 9
of figure 2 with Accelerometer sensor(0);, and
configured the device list for the Accelerometer class in
the Mica2 platform with a single ADXL202. The result-
ing object code for this application added 0 bytes of data
memory and 80 bytes of code memory to the previous con-
figuration. This is due to the method calling indirection
added from the general class (Accelerometer) to the
actual device mediator (ADXL202).

Table 1 summarizes overhead for basic configuration
(Null Sensor), sensor sampling (ADXL202) and using
device classes (Accelerometer).

3



Usage Data Memory Code Memory
Bytes % Bytes %

Null Sensor 256 100 10644 100.0
(System Base)
ADXL202 257 100 10832 101.7
Accelerometer 257 100 10912 102.5

Table 1. Overhead Summary

4 Related Work

TinyOS [7] presents a three-layer design for hard-
ware abstraction [5]. A Hardware Presentation Layer is
positioned directly over the software/hardware interface.
Components in this layer export an interface that is fully
determined by the capabilities of the underlying hardware.
A Hardware Adaptation Layer uses the raw hardware
interfaces to build domain-specific components such as
Alarm or ADC Channel. All components in this layer
are tailored to specific hardware devices and expose spe-
cific features. Finally, a Hardware Interface Layer takes
the platform-specific components and converts them into
hardware-independent interfaces through software adap-
tation (either downgrading or emulating hardware capa-
bilities).

Mantis OS [1] provides the application with a POSIX-
like interface without incurring in significant runtime
overhead (through textual substitution performed by pre-
compilation tools). The application reads sensor’s asso-
ciated ADC values by providing the desired, platform-
specific sensor name to hardware access methods such as
dev open() and dev read().

SOS [4] implements system with loadable kernel mod-
ules support through which an analog sensor driver binds
itself to an ADC channel and registers a sensor type such
as PHOTO. When the application requests for data from
a sensor type, the kernel forwards the request to the reg-
istered driver and receives the appropriate ADC reading.
The registering of drivers incurs in some memory over-
head, since the operating system has to keep a table of
function pointers indexed by sensor type.

Taking EPOS’ approach into account, the reviewed sys-
tems fall short of providing the same level of sensor ab-
straction. While EPOS contextualizes values according
to sensor type, all 3 sensor abstraction architectures only
provide a hardware-independent interface for performing
raw sensor readings. Furthermore, EPOS’ self-description
structure provides additional device-specific information
that may be used by the application as a means to fully
utilize its platform’s capabilities.

5 Conclusion

We presented a high-level sensing subsystem that pro-
vides transparent access to families of sensing devices.
Our software/hardware interface is able to abstract fam-
ilies of sensing devices in an uniform fashion, relying on

classes of sensing devices defined based on their final-
ity. Our software-based self-description mechanism al-
lows applications to address individual sensors’ specific
characteristics. We showed that this strategy does not in-
cur in excessive overhead, and presents a significant ad-
vantage with relation to solutions found in other operating
system for sensor networks.

References

[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han. Mantis: System support
for multimodal networks of in-situ sensors. In 2nd ACM
International Workshop on Wireless Sensor Networks and
Applications, pages 50 – 59, San Diego, CA, 2003.

[2] Crossbow Technology. MTS/MDA Sensor and Data Ac-
quisition Board User’s Manual. Crossbow Technology,
Inc, San Jose, CA, April 2005.

[3] A. A. Fröhlich. Application-Oriented Operating Systems.
GMD - Forschungszentrum Informationstechnik, Sankt
Augustin, 2001.

[4] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivas-
tava. A dynamic operating system for sensor nodes. In
MobiSys ’05: Proceedings of the 3rd international confer-
ence on Mobile systems, applications, and services, pages
163–176, New York, NY, USA, 2005. ACM Press.

[5] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, and
A. W. D. Culler. Flexible hardware abstraction for wireless
sensor networks. In Proceedings of the Second European
Workshop on Wireless Sensor Networks (EWSN ’05), Is-
tambul, Turkey, 2005.

[6] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The
platforms enabling wireless sensor networks. Communi-
cations of the ACM, 47(6):41–46, 2004.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Proceedings of the ninth international confer-
ence on Architectural support for programming languages
and operating systems, pages 93–104, Cambridge, Massa-
chusetts, United States, 2000.

[8] K. Lee. Ieee 1451: A standard in support of smart trans-
ducer networking. In Proceedings of the IEEE Instrumen-
tation and Measurement Technology Conference, pages
525–528, Baltimore, MD, 2000.

[9] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In SenSys
’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 95–107, New
York, NY, USA, 2004. ACM Press.

[10] F. V. Polpeta and A. A. Fröhlich. Hardware Media-
tors: a Portability Artifact for Component-Based Systems.
In International Conference on Embedded and Ubiqui-
tous Computing, volume 3207 of Lecture Notes in Com-
puter Science, pages 271–280, Aizu, Japan, Aug. 2004.
Springer.

[11] L. F. Wanner, A. S. H. Junior, F. V. Polpeta, and A. A.
Frhlich. Operating System Support for Handling Hetero-
geneity in Wireless Sensor Networks. In 10th IEEE Inter-
national Conference on Emerging Technologies and Fac-
tory Automation, Catania, Italy, Sept. 2005.

4


