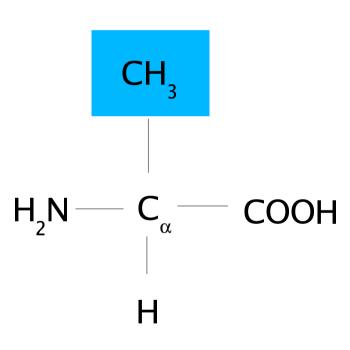
Molecular Biology Basic Concepts

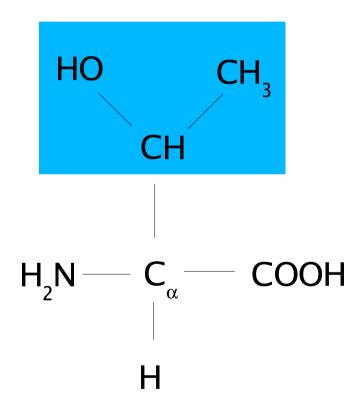
Prof. Dr. Antônio Augusto Fröhlich Charles Ivan Wust

LISHA - UFSC

```
{guto|charles}@lisha.ufsc.br
http://www.lisha.ufsc.br/~{guto|charles}
September 2003
```

Life


- Living things
 - Active participation;
 - Array of chemical reactions that never cease.
- Started about 3.5 million years ago.
- Composed of similar molecular chemestry (biochemestry)
 - Proteins
 - Nucleic acids


"We are our proteins." (Russel Doolittle)

Proteins


- Several functions
 - Structural: tissues building blocks
 - Enzymes: catalyst of chemical reactions
 - Other: oxygen transport, antibody defense, ...
- Chain of aminoacids

Amino Acid Examples

Peptide Bonds

The 20 amino acids

	1-letter code	3-letter code	Name	
1	A	Ala	Alanine	
2	С	Cys	Cysteine	
3	D	Asp	Aspartic Acid	
4	Е	Glu	Glutamic Acid	
5	F	Phe	Phenylalanine	
6	G	Gly	Glycine	
7	Н	His	Histidine	
8	I	Ile	Isoleucine	
9	K	Lys	Lysine	
10	L	Leu	Leucine	

	1-letter code	3-letter code	Name	
11	M	Met	Methionine	
12	N	Asn	Asparagine	
13	P	Pro	Proline	
14	Q	Gln	Glutamine	
15	R	Arg	Arginine	
16	S	Ser	Serine	
17	Т	Thr	Threonine	
18	V	Val	Valine	
19	W	Trp	Tryptophan	
20	Y	Tyr	Tyrosine	

Protein Structure

- Fold in 3 dimensions
 - Primary structure: Sequence of residues;
 - Secondary structure: "Local" structures (i.e. helices)
 - Tertiary structure: secondary structure on a global level, the overral 3-D structure of single proteins.
 - Quartiary structure: Product of the in interaction between different proteins.

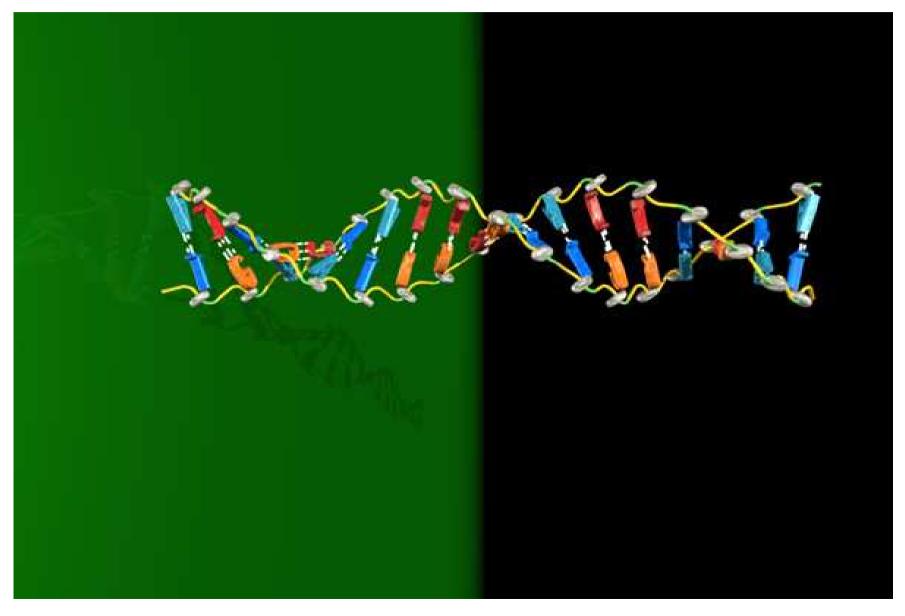
Protein 3-D Structure

http://www.the-scientist.com/images/yr2002/apr29/

Nucleic Acids

- Two kinds
 - Ribonucleic acid (RNA)
 - Desoxyribonucleic acid (DNA)

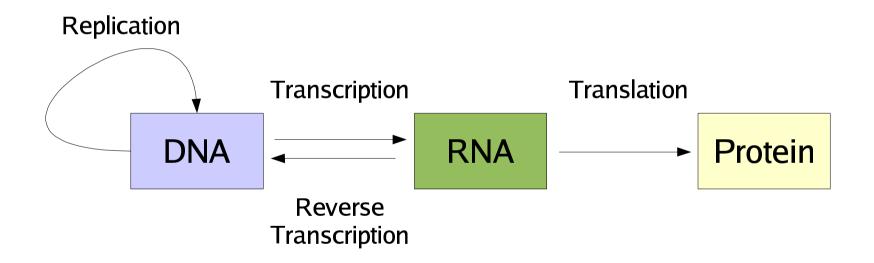
DNA


- Double chain of simpler molecules
 - Free-floating in lower organisms (prokariotes)
 - Inside the nucleus in higher organisms (euchariotes), and in mitochondria and chloroplasts (plants only)
- Single chain = strand
 - Repetition of nucleotides (sugar+phosphate+base)

- Has an orientation (5' -> 3' is default)
- 4 types of bases
 - (A)denin, (G)uanin, (C)ytosine and (T)imine

DNA

- Double strands
 - Duble helix structure discovered by Watson and Crick in 1953
- Each base in one strand is paired with a base in the other strand
 - Complementary bases (A + T, G + C)
- DNA lenth measured in *base pairs* (**bp**)
- Strands have reverse orientation (antiparallel)
- Each strand is the reverse complement of the oposite

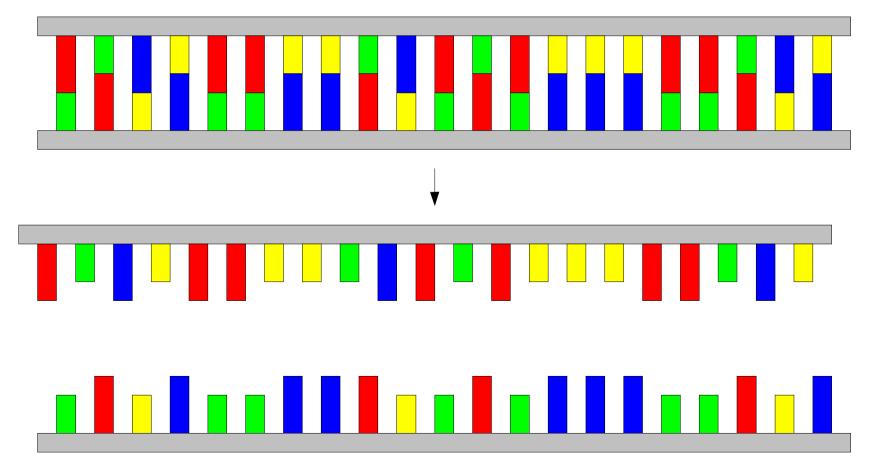

DNA

RNA

- Very similar to DNA
- Differences
 - Sugar is ribose, instead of 2'-deoxyribose
 - (U)racil instead of (T)hymine
 - Single stranded
 - Several different functions, instead of information encoding

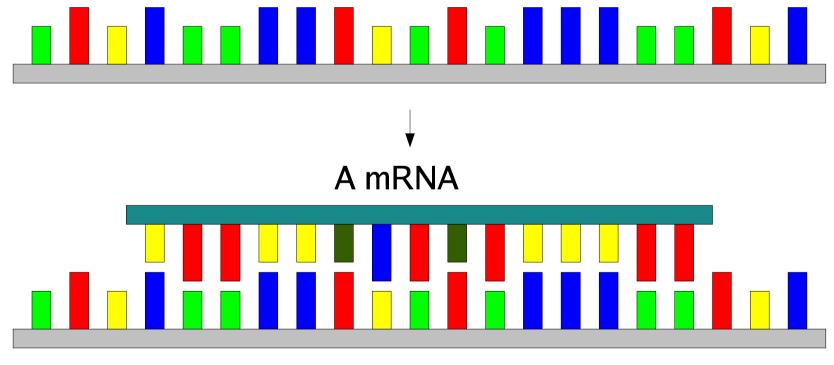
Central Dogma of Molecular Biology

Transcription


- Certain stretches of DNA encode information for building proteins, but not all of it.
- Each kind of protein usually correspond to one and only one stretch in the DNA: a gene
- Sequence of amino acids in a protein are specified by triplets of nucleotides (codons), according to the genetic code.

The genetic code

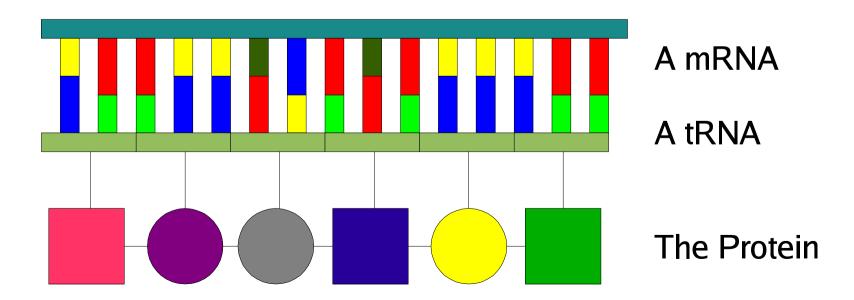
First	Second Pos.	Third Pos.			
pos.		G	A	C	T
	G	Gly	Gly	Gly	Gly
G	A	Glu	Glu	Asp	Asp
G	C	Ala	Ala	Ala	Ala
	Т	Val	Val	Val	Val
	G	Arg	Arg	Ser	Ser
A	A	Lys	Lys	Asn	Asn
A	C	Thr	Thr	Thr	Thr
	Т	Met	Ile	Ile	Ile
	G	Arg	Arg	Arg	Arg
C	A	Gln	Gln	His	His
C	C	Pro	Pro	Pro	Pro
	Т	Leu	Leu	Leu	Leu
	G	Trp	STOP	Cys	Cys
T	A	STOP	STOP	Tyr	Tyr
1	С	Ser	Ser	Ser	Ser
	T	Leu	Leu	Phe	Phe



- The codon ATG signals the start of a gene
- DNA double strand is separated

Transcription

■ The gene that is located in one of the strands is used as a tamplate to create an messanger RNA (mRNA) molecule, similar to DNA


A gene on the DNA strand

Transcription

- In more evolved organisms, there is the splicing phenomenom: some parts of the gene is not copied to mRNA.
 - The parts that are not used in the mRNA are called introns, and what is used is called exons.
 - DNA corresponding to non-spliced mRNA is called genomic DNA.
 - DNA corresponding to spliced mRNA is called complementary DNA, or simply cDNA
- The cDNA can be obtained by reverse transcription

Translation

- Translation is the process of creating proteins from RNA.
 - This happens with the aid of a molecule called tRNA, in the cell ribossomes

