
Optimal Dimensioning of a Constant Bandwidth Server

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
buttazzo@sssup.it

Enrico Bini
Scuola Superiore Sant’Anna

Pisa, Italy
e.bini@sssup.it

Abstract

The Constant Bandwidth Server (CBS) is an effective
scheduling technique frequently used to handle overruns
and implement resource reservation in real-time systems
where tasks have variable execution requirements. The be-
havior of the server is tuned by two parameters: the server
bandwidth, which defines the fraction of the processor allo-
cated to the task, and the server period, which defines the
time granularity of the allocation. The effect of the granu-
larity on task executions has never been studied before, so
it is typically assigned using ad-hoc considerations. This
paper presents a statistical study to evaluate the effects of
the server parameters on task response times, and proposes
a technique to compute the best parameters that minimize
the average response time of the served tasks.

1. Introduction

Resource reservation is a recent technique proposed to
reduce intertask interference in concurrent real-time appli-
cations characterized by highly dynamic behavior. Mul-
timedia activities managing audio and video streams rep-
resent typical examples of tasks with timing requirements
generating a highly variable computational load. In fact,
if a task manages compressed frames, the time for cod-
ing/decoding each frame can vary significantly, making the
worst-case execution time much higher than the average
one. Also, when data are received from a communication
network, the interarrival time of data packets is usually non
deterministic. In these cases, a hard real-time approach
would be very inefficient, because performing a real-time
guarantee based on the worst-case behavior would clearly
waste computational resources and significantly degrade the
system’s performance. On the other hand, designing the
system using average-case values would increase resource

efficiency, but would unavoidably cause transient overloads
that, if not properly handled, would degrade system perfor-
mance in an unpredictable fashion [9, 8].

To address this problem, the idea behind resource reser-
vation is to partition the computational resources among the
tasks according to their estimated (e.g., average) require-
ments, and then ensure that each task does not exceed its
allocated fraction. As a consequence, a time accounting
mechanism is required in the kernel to monitor the actual
resource consumption, and an enforcement mechanism is
also needed to make sure that each task will never exceed
the percentage of the resource allocated to it. A task trying
to exceed this amount is delayed to protect the other tasks
from suffering extra interference.

Resource reservation is important since it provides a
form of temporal protection, in the sense that the temporal
behavior of a task is not affected by the temporal behavior
of the other tasks running in the system, but only by its com-
putational requirements and by the fraction of the resource
allocated to it. For example, if a task is assigned a frac-
tion � � � of the total processor bandwidth, it behaves as
if it were executing alone on a slower processor with speed
�, independently of the behavior of the other tasks. This
allows guarantees to be made for each task in “isolation”,
only based on the fraction of processor allocated to it.

1.1. Related work

Several methods have been proposed in the literature to
implement resource reservation. The simplest approach to
equally partition the processor among � tasks is to use a
Round Robin scheduling scheme, according to which each
task behaves as it were executing on a virtual processor �
times slower.

The Generalized Processor Sharing (GPS) approach [14,
15] is an ideal method that treats a resource as a fluid that
can be partitioned among the tasks. Each task instanta-

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

neously receives at time � a fraction ����� of the resource,
defined as the task share. To compute the share of a re-
source, each task �� is assigned a weight ��, and its share is
computed as

����� �
���

�������
��

where ���� is the set of tasks that are active at time �. If an
appropriate admission control is performed, it is possible
to find an assignment of weights to tasks to guarantee real-
time performance to all the time sensitive activities. In fact,
based on the task rate, the maximum response time for each
task can be computed as ��	
�, where

� �
���

����
��

�

and � is the set of all tasks in the system.
Since the ideal GPS schedule cannot be realized on a real

system, other practical algorithms have been proposed to
approximate its behavior. Proportional Share (PS) schedul-
ing emulates the GPS by allocating resources in discrete
time quanta having maximum size �. Clearly, quantum-
based allocation introduces an allocation error with respect
to the fluid flow model, measured as the lag. For each task,
the lag is defined as the difference between the execution
time actually assigned to a task by the realistic algorithm
and the amount of time assigned by the ideal fluid algo-
rithm. Hence, the objective of a fair scheduler is to limit the
lag to an interval as close as possible to 0.

The first known Proportional Share scheduling algorithm
is Weighted Fair Queuing (WFQ), which emulates the be-
havior of a GPS system by using the concept of Virtual
Time. Start Fair Queuing (SFQ) [11] is a proportional
share scheduler that reduces the computational complexity
of WFQ and increases the fairness by using a simpler defini-
tion of virtual time. Earliest Eligible Virtual Deadline First
(EEVDF) is another algorithm [17] that provides an optimal
bound on the lag experienced by each task.

A simple and effective approach for implementing re-
source reservation is to reserve for each task � � a specified
amount of CPU time �� in every interval
�. Some authors
[16] tend to distinguish between hard and soft reservations.
A hard reservation guarantees the reserved amount of time
to the served task, but allows such a task to execute at most
for �� units of time every
�, whereas a soft reservation
guarantees that the task executes at least for �� time units
every
�, allowing it to execute more if there is some idle
time available.

A resource reservation technique for fixed priority
scheduling was first presented in [13]. According to this

method, a task �� is first assigned a pair ����
�� (denoted
as a CPU capacity reserve) and then it is enabled to execute
as a real-time task for �� units of time every
�. When the
task consumes its reserved quantum ��, it is blocked until
the next period, if the reservation is hard, or it is scheduled
in background as a non real-time task, if the reservation is
soft. At the beginning of the next period, the task is as-
signed another time quantum �� and it is scheduled as a
real-time task until the budget expires. In this way, a task
is reshaped so that it behaves like a periodic real-time task
with known parameters ����
�� and can be properly sched-
uled by a classical real-time scheduler.

Under EDF, resource reservation can be efficiently im-
plemented using the Constant Bandwidth Server (CBS)
[1, 2], which will be briefly recalled in Section 2. A compar-
ison between CBS and proportional share approaches has
been done by Abeni et. al. [3].

In general, for a given bandwidth � � � ��	
�, the
����
�� parameters of a reservation clearly affect the re-
sponse time of the served task, however when the jobs
have highly variable computation times the effect of the
parameters on the worst-case response time can only be
analyzed through a probabilistic approach. Recently, the
discipline of probabilistic timing analysis has significantly
advanced [7, 10], and different approaches have been pro-
posed to analyze the statistical behavior of specific real-time
scheduling algorithms [4, 18, 5, 12]. Today, there are tools
that can provide the probability distribution function of task
execution times [6]. In this paper, a probabilistic approach
is used to evaluate the effects of reservation parameters on
job responsiveness and provide a criterion for choosing the
best CBS parameters that minimize the average response
time.

1.2. Contributions and summary

The Constant Bandwidth Server (CBS) is an effective
scheduling technique to implement resource reservation.
The behavior of the server is tuned by two parameters: the
server bandwidth, which defines the fraction of the proces-
sor allocated to the task, and the server period, which de-
fines the time granularity of the allocation. The effect of the
granularity on task executions has never been studied be-
fore, so it is typically assigned using ad-hoc considerations.
In this paper, we characterize the problem and presents a
statistical study to design the server as a function of the
served task. In particular, the paper provides the following
contributions:

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

� It characterizes the response time of a served task as a
function of the server parameters, taking overhead into
account.

� It proposes a statistical study to analyze the distribu-
tion of response times as a function of the execution
requirements.

� It provides a design methodology for optimizing server
parameters to minimize the average response time of
the served task.

The rest of the paper is organized as follows. Section 2
briefly recalls the CBS mechanism. Section 3 characterizes
the response time of a served task as a function of the server
parameters. Section 4 derives the probability distribution
function of the response time as a function of that of the
statistical execution requirements. Section 5 shows how to
select the server period for some sample distributions. Sec-
tion 6 describes how to select the best server period to min-
imize the average response time. Finally, Section 7 states
our conclusions and future work.

2. Brief summary of the CBS

2.1. Terminology and assumptions

The Constant Bandwidth Server (CBS) [1, 2] is a ser-
vice mechanism that implements soft resource reservations
under the EDF scheduling algorithm. To achieve temporal
protection among tasks, we assume that each task is han-
dled by a dedicated CBS ��, with two parameters: ����
��,
where�� is the server maximum budget and
� is the server
period. The ratio �� � ��	
� is denoted as the server
bandwidth. While the bandwidth �� can be easily decided
based on the fraction of processor that has to be reserved to
the served activity, selecting the server period
 � it is not so
clear and this is the subject of the present work.

The task �� handled by the server can be periodic or ape-
riodic, with hard or soft criticality, and consists of an infi-
nite sequence of jobs ���� (� � �� �� � � �), each characterized
by a release time ���� and a computation time ���� , treated
as a random variable. Periodic jobs are regularly activated
with period ��, so that ���� � �� � ����. Aperiodic jobs
are activated not earlier than they finish. Notice that, since
we are interested in computing the task response times and
deadlines do not affect the CBS schedule, no assumption is
made on tasks relative deadlines. Hence, we focus on deter-
mining the best CBS parameters that minimize the average
response time of the server jobs.

2.2. CBS rules

At each instant, two state variables are maintained for
each server: the server deadline �� and the actual server
budget ��. Each job handled by a server is scheduled us-
ing the current server deadline and whenever the server ex-
ecutes a job, the budget �� is decreased by the same amount.
At the beginning �� � �� � �. Since a job is not activated
while the previous one is active, the CBS algorithm can be
formally defined as follows:

1. When a job ���� arrives, if �� � ��� � �������, it is
assigned a new server deadline �� � ���� �
� and �� is
recharged to the maximum value � �, otherwise the job
is served with the current deadline using the current
budget.

2. When �� � �, the server budget is recharged at the
maximum value �� and the server deadline is post-
poned at �� � �� �
�. Notice that there are no finite
intervals of time in which the budget is equal to zero.

As we can see, the behavior of the server is tuned by
two parameters: the server bandwidth, which defines the
fraction of the processor allocated to the task, and the server
period, which defines the time granularity of the allocation.
The effect of the granularity on task executions has never
been studied before, so it is typically assigned using ad-hoc
considerations.

For example, if the server task is periodic, it is natural
to assign a server period equal to the task period. Then,
the server bandwidth is given by ��	
�, where the server
budget �� can be assigned depending on task execution re-
quirements. If �� is set equal to the task worst-case exe-
cution time or higher, the processing capacity is wasted but
the task response becomes very predictable and the task can
be guaranteed to meet all its deadlines. If �� is set equal to
the average execution time, then the resource utilization is
optimized, but the task will experience frequent execution
overruns that will delay its completion.

When the server task is aperiodic, however, it is not intu-
itive to set the server parameters. For a given server band-
width, a short period allows approximating the Generalized
Processor Scheduling (GPS), in which the task executes at
a uniform speed proportional to the bandwidth allocated to
it. In practice, however, a short period causes the server to
execute the task in many small chunks, so increasing the
runtime overhead. On the other hand, a large period allows
allocating a large budget (remember that � � � ��
�) so

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

preventing interruptions due to budget exhaustion, but in-
creases the response time since the task is scheduled with a
longer deadline.

To evaluate the effects of the server parameters on task
response times, we first characterize the response time of
the served task as a function of the server parameters, and
then present a statistical study to compute the best parame-
ters that minimize the average response time of the served
jobs.

3. Response time characterization

In this section we evaluate the worst-case response time
�� of a job with computation time �� served by a CBS with
bandwidth ��, as a function of the server budget � �. For
the sake of clarity, we first derive �� by neglecting the over-
head, and then modify the expression to take the overhead
into account.

From the CBS analysis [2], we know that, if the task set
is feasible, that is, if the total processor utilization is less
than 1, then the served job can never miss the current server
deadline. Hence, the maximum response time � � occurs
when the other tasks in the system create the maximum in-
terference on the server. If the computation time � � of the
served job is exactly a multiple of the server budget� �, then
the job finishes at the server deadline, that is

�� �
��

��

� �
��

��

� (1)

More generally, if the computation time � � of the job is
not multiple of the budget ��, the last portion of the job will
not finish at the server deadline, but it will finish at most 	�

units before the deadline, as shown in Figure 1, where

	� �

�
��

��

�
�� � ��� (2)

∆ i

Ji

iQ

t

t
didi

Figure 1. Worst-case finishing time of a job
served by a CBS.

Hence, the response time of the job becomes

�� �

�
��

��

�

� �	�

�

�
��

��

�

� �

��
��

��

�
�� � ��

�

� �� �

�
��

��

�
�
� ����� (3)

Figure 2 illustrates the worst-case response time of a
CBS as a function of the budget.

Ci

Ui

Qi

R i

CiCiCi
23

Ci
4

Ci

Ui
2

Figure 2. Worst-case response time of a CBS
as a function of the budget.

From the graph shown in Figure 2 it is clear that, for a
given job with constant execution time ��, the minimum
worst-case response time is ��	�� and can be achieved
when �� is a perfect multiple of ��. In practice, how-
ever, task execution time varies, inducing response time
fluctuations due to the bandwidth enforcement mechanism
achieved through deadline postponements. From Figure
2 it is also clear that such fluctuations would be reduced
by making the budget very small compared to the aver-
age execution time, so that the server would approximate
the ideal GPS. Unfortunately, a small budget (which means
a short server period) causes the job to be split in many
small chunks, increasing the runtime overhead. As a conse-
quence, to properly set the server granularity
 �, the runtime
overhead must be taken into account in the analysis.

3.1. Taking overheads into account

Whenever the budget is exhausted, the server deadline
is postponed, so the served job can be preempted by other

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

40

50

60

70

80

90

100

110

0 20 40 60 80 100 120

W
or

st
-c

as
e

re
sp

on
se

 ti
m

e

Server period (P)

without overhead
with overhead

Figure 3. Worst-case response time of a CBS
as a function of the period.

tasks with earliest deadline. If � denotes the time needed for
a context switch, then the overhead introduced by the CBS
can be taken into account by subtracting such a time from
the server budget. Hence, Equation (3) can be modified as
follows:

�� � �� �

�
��

�� � �

�
�
� ��� � ��

� �� �

�
��

��� � �

�
�
� �
��� � ��� (4)

Figure 3 illustrates the worst-case response time of a
CBS as a function of the period, with and without overhead.
Equation (4) has been plotted for � � � ��, �� � ���
, and
� � ���. As is clear from the plot, the overhead prevents us-
ing small values of the period, hence it is interesting to find
the value of the server period that minimizes the response
time. Note that, for computing the probability distribution
function of the response time, we actually need to express
the response time as a function of the job execution time � �.

Figure 4 illustrates the worst-case response time of a
CBS as a function of the job execution time. As it can be
noticed from Figure 4, the response time � � can be upper
bounded by the following linear function

���
� �
� ��� � ��

�
�� � �

�� (5)

and lower bounded by

���
� �

�
�� � �

��� (6)

�� � �

� ��� � �

�

�
� ��� � �

�
�

�
� ��� � �

�
�

�
� ��� � �

��

��

Figure 4. Worst-case response time of a CBS
as a function of the job execution time.

In Section 4 we will show that this linear upper bound
will be very useful for the purpose of minimizing the aver-
age response time.

4. Statistical analysis

We now consider the problem of selecting the best CBS
parameters, such that the average task response time � � is
minimized. For this purpose we suppose to have the prob-
ability density function (p.d.f.) ����� of the task execu-
tion time, and the respective cumulative distribution func-
tion (c.d.f.)
����, representing the probability that the ex-
ecution time is smaller than or equal to �. That is:

���� �

� �

�

�����
�� (7)

Since the minimization of the average �� can in general
be too complex, we first consider the problem of minimiz-
ing its linear upper bound ���

� . In this case, the average
response time ����

� is computed as follows:

����
� �

� ��

�

�

� ��� � ��

�
�� � �

�

�
�����
�

�
� ��� � ��

�

�� � �
����

�
���� ��� � ��

�

� �� � �
���� (8)

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

Hence, the period
� which minimizes the average re-
sponse time ����

� can be computed by simple functional
analysis. Thus, we have:

����
�

�
� �� �� �

�

�
� �� � ���
���� (9)

which is equal to zero when

 ��	
� �

�

��

�
��

�
� ����

�� ��

	
� (10)

Taking into account the true response time from Eq. (4),
the search for the best value of
� is more complex. In fact,
we have:

���� �

� ��

�

�
��

�
�

�� � �

�
�
� ��� � ��

�
�����
�

� ���� � �
� ��� � ��

� ��

�

�
�

�� � �

�
�����
�

� ���� � �
� ��� � ��
��

���

� ��

��	��
�

�����
�

� ���� � �
� ��� � ��

��

���

���
������ � �����

(11)

In the next section we show how to find the exact value
of the optimal period
� of the CBS for some typical distri-
butions.

5. Examples of p.d.f.

We first analyze the case in which the served task is
characterized by two computation times ��	
 and ����

with different probabilities, and then consider the case of
a computation time uniformly distributed in an interval
[��	
� ����].

5.1. Two values

Consider the case in which the computation times of the
served task can only have two values, ��	
 and ����. We
suppose that ��	
 can occur with a probability of � and,
consequently ���� can occur with a probability �� �. The
cumulative distribution function is:

���� �

��

��
� when � � ��	

� when ��	
 � � � ����

� when � � ����

(12)

0 20 40 60 80 100 120 140
70

80

90

100

110

120

130

140

150

P
i
 (CBS period)

R
a
v
g
 (

a
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
)

C
min

=13, C
max

=23, p=0.8

C
min

=10, C
max

=35, p=0.8

Figure 5. Average response time as a function
of the period, for jobs with two computation
times.

To simplify the equations, we define�

�

�
 �
�
����

	��

�
�
�

����

�����

�
�� �

�
����

	��

�
�
�

����

�����

� (13)

By taking into account the intervals where the c.d.f. is con-
stant, Equation (11) becomes

���� � ���� � �
� ��� � ��

�
���

���

� �

���

����

��� ��

	

� ���� � �
� ��� � ����
 � ��� ����� � �
��

� ���� � �
���� ��� � �����
 � ��� ������ (14)

Figure 5 illustrates the average response time as a func-
tion of the period, for jobs with two computation times. Two
curves are reported, for different values of ��	
 and ����,
having the same average value (� ��� � �
). The figure il-
lustrates also the upper bound and the lower bound obtained
from equations (5) and (6), respectively.

5.2. Uniform density

We now consider the case in which the computation time
is a random variable uniformly distributed between ��	

and ����. Hence, the c.d.f. is given by:

���� �

��

��
� when � � ��	

�����

���������

when ��	
 � � � ����

� when � � ����

(15)

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

For this specific c.d.f., the average response time is

���� � ���� � �
� ��� � ���
���

���

� �

���

����

���
���� � ��� ��	

���� � ��	

�

	

� ���� � �
� ��� � ���
�� �

���

����

���� � ��� ��	

���� � ��	

	

� ���� � �
� ��� � ���
�� �

��	

���� � ��	

��� � �
��

���

����

���� � ��

���� � ��	

	

� ���� � �
� ��� � ���
������ � �
��	

���� � ��	

�

�� � �

���� � ��	

���

����

�

	

and finally

���� � ���� �

� ��� � �

���� � ��	
�
������� �
��	
����� ��

��������� �
��
���

�

�
�

(16)

Figure 6 illustrates the average response time as a func-
tion of the period, for jobs with execution times uniformly
distributed in a range, [��	
� ����]. Four curves are re-
ported, for different values of ��	
 and ����, having the
same average value (� ��� � �
). The figure illustrates also
the upper bound and the lower bound obtained from equa-
tions (5) and (6), respectively.

6. Selecting the period

From the results achieved in the previous section, we can
make the following observations:

1. The lower bound and the upper bound do not depend
on the specific distributions. This aspect is very use-
ful because, deriving the precise distribution of tasks
execution times is not easy and requires extensive test-
ing, specific tools, and a profound knowledge of the
processor architecture. On the other hand, the average
execution time is much easier to estimate and can eas-
ily be used to quickly derive a suboptimal solution.

0 20 40 60 80 100 120 140
70

80

90

100

110

120

130

140

150

P
i
 (CBS period)

R
a
v
g
 (

a
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
)

C
min

=15, C
max

=15

C
min

=13, C
max

=17

C
min

=11, C
max

=19

C
min

=5, C
max

=25

Figure 6. Average response time as a function
of the period, for jobs with execution time uni-
formly distributed in a range.

2. The exact value of the optimal period that minimizes
the average response time can be computed using nu-
merical techniques, however small values of
 � are
less sensitive to wrong estimations of the computation
time distribution, hence safer. In fact, the fluctuations
of the average response time increase with the server
period (
�) but decrease with the size of the range
(���� � ��	
), and in general with the variance of
the task computation time.

As a consequence, for tasks with highly variable com-
putation times, the response time is well approximated
by the curve in the average between the upper bound
���
� and the lower bound � ��

� , that is:

���
� �

���� ��� � �

�
�

�

� �� � �

���� (17)

which has a minimum at

 ��
� �

�

��

�
��

�
� � ����

�� ��

	
(18)

Notice that, if this value is chosen when the variance is
not high, we may incur in an appreciable error between
the estimated response time and the real one. In fact,
as is clear from Figure 6, a large fluctuation is experi-
enced for narrow distributions and a small error in the
computation time may lead to an unexpected increase
in the response time.

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

In this cases, it may be safer to select a smaller period
to reduce the response time fluctuations. This can be
achieved by setting the CBS period as the minimum
point of the upper bound curve, as given by Equation
(10).

3. The amplitude of the fluctuations can be computed as
the difference between the response time upper bound
���
� and the lower bound � ��

� given by equations (5)
and (6), respectively:

	�� � ���
� ����

� �
���� ��� � � (19)

which is linearly dependent on the value of
 � by the
constant �� � ���. This means that the action of re-
ducing the period
� for containing the fluctuations is
more effective for servers with a small bandwidth.

7. Conclusions

In this paper we addressed the problem of dimensioning
the parameters of a Constant Bandwidth Server (CBS) to
minimize the average response time of the served jobs. To
achieve temporal protection among the tasks in the system,
we assumed that each task is handled by a dedicated CBS,
whose parameters have to be tailored to the characteristics
of the served task. We considered tasks with variable com-
putation times and known distribution function, which can
be estimated by code analysis or through an experimental
evaluation.

In the ideal case, we observed that a CBS with a given
bandwidth �� could approximate the behavior of the fluid
GPS model by using a very small time granularity (that is, a
small value for the server period
�) and then set the budget
at �� �
���. However, a small period causes the job to
be split in many small chunks, increasing the runtime over-
head. As a consequence, to properly set the server granular-
ity
�, the runtime overhead must be taken into account in
the analysis.

The results achieved by the statistical analysis, including
the overhead, show that

� For tasks with highly variable computation times, the
response time is well approximated by the curve in the
average between the upper bound ���

� and the lower
bound ���

� , thus the period can be set at the value that
minimizes this curve, that is

� �
�

��

�
��

�
� � ����

�� ��

	
�

� When the variance is not high, to prevent large fluctua-
tions due to estimation errors, it may be safer to select
the period corresponding to the minimum point of the
upper bound curve, as given by Equation (10), that is

� �
�

��

�
��

�
� ����

�� ��

	
�

� Whenever the precise distribution of computation
times is not known and only the average value is avail-
able, the best CBS period is the one that minimizes the
upper bound of the response time, thus it is also given
by Equation (10).

As a future work, we plan to address the analytical com-
putation to derive the optimal CBS period and to extend the
probabilistic analysis to the case of generic jobs activations,
thus relaxing the assumption of having the interarrival time
greater or equal to the response time of the previous job.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the ��

th

IEEE Real-Time Systems Symposium, pages 4–13, Madrid,
Spain, Dec. 1998.

[2] L. Abeni and G. Buttazzo. Resource reservation in dynamic
real-time systems. Real-Time Systems, 27(2):123–167, July
2004.

[3] L. Abeni, G. Lipari, and G. Buttazzo. Constant bandwidth
vs. proportional share resource allocation. In Proceedings of
the IEEE International Conference on Mutimedia Comput-
ing and Systems, volume 2, pages 107–111, Firenze, Italy,
June 1999.

[4] A. K. Atlas and A. Bestavros. Statistical rate monotonic
scheduling. In IEEE Real Time System Symposium, Madrid,
Spain, Dec. 1998.

[5] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of
probabilistic hard real-time systems. In RTSS, Austin (TX),
U.S.A., Dec. 2002.

[6] G. Bernat, A. Colin, and S. M. Petters. pWCET: A tool for
probabilistic worst-case execution time analysis of real-time
systems. Ycs-2003-353, Department of Computer Science,
University of York, Feb. 2003.

[7] A. Burns, G. Bernat, and I. Broster. A probabilistic frame-
work for schedulability analysis. In Proceedings of the
�

rd ACM International Conference on Embedded Software,
pages 1–15, Philadelphia (PA), U.S.A., Oct. 2003.

[8] G. C. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft
Real-Time Systems: Predictability vs. Efficiency. Springer,
2005.

[9] M. Caccamo, G. Buttazzo, and L. Sha. Handling execution
overruns in hard real-time control systems. IEEE Transac-
tions on Computers, 51(7):835–849, July 2002.

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

[10] A. Ermedahl, F. Stappert, and J. Engblom. Clustered cal-
culation of worst-case execution times. In Proceedings of
the �

�� International Conference on Compilers, Architec-
tures, and Synthesis for Embedded Systems, San José (CA),
U.S.A., Oct. 2003.

[11] P. Goyal, X. Guo, and H. M. Vin. A hierarchical cpu sched-
uler for multimedia operating systems. In �

nd OSDI Sympo-
sium, 1996.

[12] K. Kim, J. L. Diaz, J. M. Lopez, L. L. Bello, C.-G. Lee, and
S. L. Min. An exact stochastic analysis of priority-driven
periodic real-time systems and its approximations. IEEE
Transactions on Computer, 54(11):1460–1466, 2005.

[13] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: Operating system support for multimedia applica-
tions. In Proceedings of IEEE International Conference on
Multimedia Computing and Systems, pages 90–99, Boston
(MA), U.S.A., May 1994.

[14] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: the single-node case. IEEE/ACM Transactions on
Networking, 1(3):344–357, June 1993.

[15] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in intergrated services net-
works: the multiple node case. IEEE/ACM Transanctions
on Networking, 2(2):137–150, Apr. 1994.

[16] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source kernels: A resource-centric approach to real-time and
multimedia systems. In Proceedings of the SPIE/ACM Con-
ference on Multimedia Computing and Networking, volume
3310, San José (CA), U.S.A., Jan. 1998.

[17] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Proceeding of the ��

th IEEE Real Time System Symposium,
pages 288–299, Washington (DC), U.S.A., Dec. 1996.

[18] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J. W.-S. Liu. Probabilistic performance guarantee
for real-time tasks with varying computation times. In Real-
Time Technology and Applications Symposium, pages 164–
173, Chicago (IL), U.S.A., Jan. 1995.

Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS'06)
0-7695-2761-2/06 $20.00 © 2006

