
IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

The Deferrable Server Algorithm for
Enhanced Aperiodic Responsiveness

in Hard Real-Time Environments
Jay K. Strosnider, Member, IEEE, John P . Lehoczky, Member, IEEE, and Lui Sha, Senior Member, IEEE

Abstract-Most existing scheduling algorithms for hard real-
time systems apply either to periodic tasks or aperiodic tasks but
not to both. In practice, real-time systems require an integrated,
consistent approach to scheduling that is able to simultaneously
meet the timing requirements of hard deadline periodic tasks,
hard deadline aperiodic (alert-class) tasks, and soft deadline
aperiodic tasks. This paper introduces the Deferrable Server (DS)
algorithm which will be shown to provide improved aperiodic
response time performance over traditional background and
polling approaches. Taking advantage of the fact that, typically,
there is no benefit in early completion of the periodic tasks, the
Deferrable Server (DS) algorithm assigns higher priority to the
aperiodic tasks up until the point where the periodic tasks would
start to miss their deadlines. Guaranteed alert-class aperiodic
service and greatly reduced response times for soft deadline
aperiodic tasks are important features of the DS algorithm,
and both are obtained with the hard deadlines of the periodic
tasks still being guaranteed. The results of a simulation study
performed to evaluate the response time performance of the new
algorithm against traditional background and polling approaches
are presented. In all cases, the response times of aperiodic tasks
are significantly reduced (often by an order of magnitude) while
still maintaining guaranteed periodic task deadlines.

Zndex Terms- Aperiodics, hard deadlines, deferrable server,
periodics, real-time, response times, schedulability.

I. INTRODUCTION

OST existing scheduling algorithms for hard real-time M systems apply either to periodic tasks or aperiodic tasks
but not both. In practice, however, most real-time systems
require an integrated, consistent approach suitable for sched-
uling hard deadline periodic tasks along with both hard and
soft deadline aperiodic tasks. The periodic tasks typically arise
from sensor data or control loops, while the aperiodic tasks
generally arise from operator actions or aperiodic events. Most
aperiodic tasks have average response time requirements (soft

Manuscript received July 19, 1989; revised May 7, 1990, October 12. 1991,
March 1, 1992. This work was supported in part from a grant lrom the Office
of Naval Research and in part from a grant from Naval Ocean Systems Center.

J. K. Strosnider is with the Department of Electrical and Computer
Engineering, Camegie Mellon University, Pittsburgh, PA 152 I3 USA; E-mail:
strosnider@ece.cmu.edu.

J . P. Lehoczky is with the Department of Statistics, Camegie Mellon
University, Pittsburgh, PA 15213 USA.

L. Sha is with the Software Engineering Institute and School of Computer
Science, Camegie Mellon University, Pittsburgh, PA 15213 USA.

IEEE Log Number 94071 13.

deadlines). However, some aperiodic tasks, such as alerts,
may require guaranteed response times. We define alerts as
aperiodic tasks with very high semantic importance requiring
guaranteed response time performance. The problem is to
jointly schedule the periodic and aperiodic tasks so that
the individual timing requirements for all tasks are met. In
particular, the hard deadlines of periodic tasks and aperiodic
alerts must be met, and the average response times for the
other aperiodic tasks should be minimized.

One commonly used approach is to treat the aperiodic
tasks as background tasks when their response times are not
critical. A second commonly used approach when timing
requirements are more stringent is to use polling or time
division multiplexing (TDM) schemes. This paper presents
a new scheduling algorithm which is designed to offer fast
response time performance for aperiodic tasks while still
guaranteeing the hard deadlines of periodic tasks at a high
level of periodic tasks utilization. The new algorithm, called
the Deferrable Server (DS) algorithm, is able to substantially
reduce the response time of aperiodic tasks by delaying the
completion time of periodic tasks while still ensuring that
their deadlines are met. The DS algorithm is built upon
the rate monotonic scheduling algorithm 121 which features
an attractive combination of high performance, predictable
behavior and ease of implementation.

Under the assumption of preemptive scheduling and task
deadlines equal to task periods, Liu and Layland (21 proved
that the rate monotonic algorithm is the optimal fixed priority
scheduling algorithm. Here, optimality means that if a fixed
priority scheduling algorithm can meet all deadlines of any pe-
riodic task set, then so can the rate monotonic algorithm. Fixed
priority scheduling algorithms cannot always achieve 100%
processor utilization and still meet all task deadlines. Liu and
Layland derived a least upper bound on processor utilization,
given by n('2l/" - 1) for a task set with 71. periodic tasks.
Any task set with total processor utilization at or below this
bound could be scheduled by the rate monotonic algorithm.
Joseph and Pandya [141 and Lehoczky, Sha, and Ding [6] later
developed a necessary and sufficient (exact) schedulability
tests that can be used to determine the schedulability of
any given periodic task set. Recent work by Lehoczky [l]
expanded the exact scheduling criterion to allow for general
task deadlines. In addition, the rate monotonic algorithm
has been greatly generalized to incorporate effects such as

0018-9340/95$04.00 0 1995 IEEE

mailto:strosnider@ece.cmu.edu

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

task synchronization and transient overload. A comprehensive 11. DEFERRABLE SERVER DS ALGORITHM DESCRIPTION
summary can be found in Lehoczky, Sha, Strosnider and
Tokuda [7].

Other related scheduling work includes work by Liu, Liu
and Liestman /3] who developed slack time bounds for pe-
riodic tasks scheduled using the rate monotonic algorithm.
Leung and Merrill [4], and Lawler [5] considered deadline
scheduling on multiple processors. Mok [8] showed that
the least slack-time algorithm is an optimal algorithm for
scheduling preemptable periodic tasks on a single processor,
and also proved that the least slack-time algorithm dominates
the earliest deadline scheduling algorithm on multiprocessor
scheduling. Sha [9] showed that the dynamic algorithms
are unstable under transient overload, meaning that under
certain circumstances the deadlines of tasks can be missed in
an unpredict5ble manner. In contrast, the transient overload
problem can be easily solved in the context of the rate
monotonic scheduling algorithm [91. Leung 141 proved that
when the start time and the deadline for a task do not coincide
with the period boundaries of a periodic task, that it is an
NP-hard problem to decide if such a periodic task set can be
scheduled by the earliest deadline algorithm [4]. Mok [SI found
the same difficulty when tasks use semaphores for mutual
exclusion.

This paper addresses a new aspect of hard real-time sched-
uling, namely the joint scheduling of hard deadline periodic
tasks and aperiodic tasks. Specifically, the approach taken is
the construction of a special periodic server task for processing
aperiodic tasks. If the server task’s capacity is available only at
periodic instants, then it is the same as a polling task (hereafter
called a Polling Server). By contrast, the Deferrable Server or
DS capacity is available for processing aperiodic tasks arriving
at any time in its period, a modification which leads to better
aperiodic task response times. The inclusion of a server task,
whether a Polling Server or a Deferrable Server task calls for
a new analysis for two distinct reasons. First, the utilization of
the Polling and DS Server tasks will be fixed, consequently, the
Liu and Layland least upper bound can be increased by taking
this utilization explicitly into account. Second, the DS task
violates one of the Liu and Layland assumptions, namely that
the task is ready at the start of the task period. Consequently,
a modification of Liu and Layland’s analysis must be carried
out. These new analyses are important contributions of this
paper.

This paper is organized as follows. Section I1 sets the con-
text for the aperiodic scheduling problem and introduces the
Deferrable Server algorithm. Section I11 extends the Lehoczky,
Sha and Ding exact case schedulability analysis [6] to include
a Deferrable Server task as the highest priority task. Section
IV first develops least upper bounds for the two tasks case
for both the Polling Server and the Deferrable Server, and
then summarizes the least upper bounds for the general case.
Appendixes A and B provide proofs for the Polling Server
and Deferrable Server least upper bounds respectively. Section
IV-C provides guidelines for designing Deferrable Servers.
Section V summarizes the results of simulation studies run
to evaluate the response time performance of the algorithms.
Section VI provides a summary and conclusions.

The DS algorithm extends the rate monotonic scheduling
algorithm to provide abstractions to support the scheduling of
aperiodic tasks requiring quick response times. The rate mono-
tonic algorithms for scheduling periodic tasks was formalized
by Liu and Layland [2] under the following assumptions:

A.l) All periodic tasks, 7, have periods, T , and constant,
known execution times, C. Further, tasks are ready
for execution at the beginning of each period,

A.2) Task deadlines, D, are at the end of the task periods,
that is D = T.

A.3) Tasks are independent, do not synchronize or block
each other and do not suspend themselves.

A.4) All overhead for scheduling, context swapping, etc.,
is assumed to be zero.

The rate monotonic algorithm assigns priorities in inverse
relation to task periods, that is the shorter the task’s period,
the higher the task’s priority with ties broken arbitrarily.
Throughout the following analysis, we first analyze the Polling
Server PS and then extend the analysis to address the DS
case.

PS Algorithm Description: A Polling Server is a periodic
task with period 7’ps and an execution time Cps. The PS is
used to provide relatively high priority service to aperiodic task
arrivals. It is ready to run at the start of its period and services
pending or arriving aperiodic tasks over the interval from the
start of its period until Cps time units later. The PS task is
subject to preemption by higher priority tasks, until either it
exhausts its execution time or there is no aperiodic work left
to be executed. In the latter case, it loses any of the unused
execution time and is unavailable to service aperiodic tasks
until the start of its next period. The PS task is scheduled as if
it were a periodic task with period Tps. Aperiodic tasks that
arrive or remain when the PS is unavailable can be serviced
at background priority.

DS Algorithm Description: A Deferrable Server (DS) is a
periodic task with period TDS and capacity CDS. The DS
is used to provide high priority service to aperiodic tasks.
It is ready at the start of its period and services aperiodic
task arrivals, subject to preemption by higher priority tasks,
until it exhausts its execution time, CDS, or the end of its
period is reached. Unlike the PS which loses any unused
execution time when there is no aperiodic work remaining, the
DS execution time, CD,, is available for servicing aperiodic
arrivals throughout its entire period. It loses any unused
execution time at the end of its period when its full capacity
CDS is restored. The DS task is scheduled as if it were a
periodic task with period TDS. Aperiodic tasks that arrive
when the DS execution time, CDS, has been exhausted can
be serviced at background priority.

In general, the DS task is assigned a priority according to
the rate monotonic algorithm based on its period, TDS, relative
to the other periodic tasks. While the DS task can execute at
any priority level, assigning the DS task the highest priority
(by giving it a period no longer than the shortest periodic
task period) allows one to guarantee that the deadlines of
aperiodic alerts are met as well as enhancing the respon-

STROSNIDER et al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 15

siveness of the soft deadline aperiodic tasks. At intermediate
priority levels, the DS is less capable of providing responsive
aperiodic service. Moreover, DS capacity can be lost because
of higher priority preemptions even when aperiodics are ready
for processing. For these reasons, we only consider the DS at
the highest priority level.

The DS task is different from the other periodic tasks.
Each of the other tasks correspond to specific periodic tasks
which are assumed to be ready to run at the start of their
respective periods. The DS task is demand driven and can run
in any part of its period in response to aperiodic arrivals. This
characteristic, along with the fact that the DS task typically
runs at the highest priority, provides highly responsive service
for aperiodic tasks in hard real-time environments. On the
other hand, the ability of the DS task to defer its execution
time until later in its period when it may be needed violates
assumption A 1 . The schedulability analysis developed by Liu
and Layland (21 no longer applies, and a new analysis must
be developed.

111. NECESSARY AND SUFFICIENT
SCHEDULABILITY CONDITIONS

We next present an analysis leading to a determination of the
schedulability of a DS task, TO, executing at the highest priority
together with m additional periodic tasks, T I , . . . , rm,, with
priority assignments given by the rate monotonic algorithm.
Each of the m + 1 tasks is characterized/ by a period, Ti, an
execution time, C,, and a phasing relative to 0, It, satisfying
0 5 Ii < Ti. We assume that TO 5 TI 5 T2 5 . . . 5 Tm, and
assign priorities consistent with the rate monotonic scheduling
algorithm. The m ordinary periodic tasks have deadlines equal
to their period. The kth execution request of r;, 1 5 i 5 rn is
ready at 1, + (k - 1)T;, and executes for C; units of time by
its deadline at 1, + IC?;, k 2 1. The DS task, r0 provides Co
units of available execution time starting at 10 + (k - 1)To.
This execution time is available for use throughout the interval
[IO + (IC - l)?‘~, 10 + kTo), and any unused capacity is lost at
10 + kT,. We will discuss the choices of C,, and TO to achieve
good aperiodic response and minimize the wasted capacity in
Section IV-C. We first focus on determining criteria that ensure
that ail deadlines of the periodic tasks are guaranteed.

In this section, we derive necessary and sufficient conditions
which will ensure that all deadlines of the periodic., tasks
are always met for any task phasing. The derivation of the
necessary and sufficient schedulability conditions relies upon
the following three results from Liu and Layland [2], and
Lehoczky, Sha and Ding 161:

Result 1: A task rj has its longest response time when it
arrives at a critical instant. A critical instant occurs at t = 0
when 1; = 0, 1 5 a 5 m.
Result 2: All task deadlines will be met using the rate
monotonic scheduling algorithm if the first request for each
task meets its deadline under critical instant phasing, I , = 0,
1 5 i _< vi.
Result 3: All periodic task deadlines are guaranteed by the
rate monotonic algorithm under all task phasings if and only

if

The third result, which is the necessary and sufficient
schedulability condition as stated in [6], relied on the earlier
two results from Liu and Layland, and will be used to
determine the schedulability of task sets which include a PS. In
this paper we will generalize the above three results to permit
inclusion of the DS task ro at the highest priority level.

We define the response time of a task to be the time between
its arrival and its completion. We want to find the conditions
for the longest response time for any execution request of task
ri, 1 5 i 5 m. To do this, we introduce the concept of a level-i
busy period on the processing resource.

Definition: A level-i busy period is a time interval [s , t]
satisfying the following three conditions:

1) All requests of priority i or higher made before s are
completed by s,

2) All requests of priority i or higher made before t are
completed by t.

3) For every ‘ 1 ~ E (.s , t) , there exists at least one request
of priority i or higher that arrived before 11, and is not
completed by II. .

To illustrate this concept, consider a task set consisting of
two tasks: rl : C1 = 4, T1 = 6. II = 0 and r2 : C2 = 6,
Tz = 14, 12 = 0 , with ri having priority i , i = 1,2. During
[O, 241 the level-1 busy periods are [O, 41, [IO, 141 and [20,
241, while the level-2 busy periods are [0, I O] , [10, 201 and
[20, 241. Note that the processor is continuously busy with
tasks of priority 2 or higher throughout [0, 241; however, the
level-:! busy periods are separated by the time points 10 and
20 at which all outstanding requests have been completed. The
above example shows that a level-i busy period may or may
not contain a request for ri. If, as we have assumed, Di 5 Ti,
all deadlines are met and a level-i busy period contains a
request for T;, then that busy period will contain exactly one
such request, and it will end when that request is completed.
This follows because no task of priority higher than i can be
active when r; completes, and at most one request for r; can
be active if all deadlines are met.

The concept of level-i busy period can be used to charac-
terize the longest response time of any request for rl.

Lemma 3.1: Suppose a periodic task set r] , . . . , r , is
schedulable using a fixed priority scheduling algorithm where
r; is assigned priority %. A necessary condition for an execution
request of 7i to have its longest response time is for the request
of ri to initiate a level-i busy period.

Proof: Tasks ri+l, . . . , r,, are of lower priority than ri
and can be preempted by r;, thus they can be ignored. Consider
any phasing of tasks 71, r2 ~ . . . , r?. Suppose that the execution
request of T; does not initiate a level-i busy period. This means
that 7;’s request must occur after il level-i busy period started.
Let the start of the level-i busy period be s < t,;, where t L
denotes the time of ri’s request. During [s , t i] , the processor
is continuously busy with work of priority higher than i . For
the given phasing, T, will complete at some time t > t , , giving

76 tEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1 , JANUARY 1995

a response time of t - t,. Thus there are exactly C, units of
computation available to r, in [t,, t] , and none in [s, t z] . If r,
had been initiated at time s, then it would also have completed

or equivalently

k

at to time it in 1s. t , since t,]. This there would is no increase level-i computation the response time time available to s - t. T o l t l ~ k min { 5 (CO (1+ [21) +z c, I;]) } I 1.

(3)
For the entire task set to be schedulable, (3) must hold for

each IC, 1 5 IC 5 771. This leads to the necessary and sufficient
schedulability condition given by

This shows that the response time of task 7% is maximized only
if its request initiates a level-i busy period.

We next find the worst case phasing of the tasks, that is the
phasing that maximizes the response time of task i.

Theorem 3.2: The task set phasing which causes the longest
response time for any periodic task occurs when all task
periods of equal or higher priority are requested simultane-
ously, and the highest priority Deferrable Server task demands
Co units at this instant and is reinitiated Co units later. To
check whether a task set is schedulable using a fixed priority
algorithm with the Deferrable Server task having the highest
priority, one need only check whether the first execution
request of each task meets its deadline under this worst case
phasing.

Prosf: Using lemma 3.1, we may assume that 7 % ' ~ request
initiates a level-i busy period, so at the time of its request,
which we refer to as 0, there is no accumulated work of higher
priority. Hence, 7, 's period starts at 0. All other periods of
tasks with priority higher than z start at 13, 1 5 j < z with
IJ 2 0. The worst case IJ occurs when the processor must
devote the largest amount of time to r3 during [O, t] , where t
is the completion time of T ~ . Given 13, the cumulative demand
for the processor made by any non-DS periodic task T~ in
[O , t] is given by

which is maximized for all t 2 0 by setting I3 = 0. The special
case of the Deferrable Server task ro is somewhat different. It
can request Co units anywhere in any To time units. The largest
demand for processor time is attained by setting Io = Co and
having execution requests in [O. Co]. [Co. 2Co], [Co+T'. 2C0+
To] etc. Since the worst case phasing results in the longest
response time for any task, if the first execution request
meets its deadline under the worst case phasing, so will all

We can now generalize (1) to provide a necessary and
sufficient schedulability test with a high priority DS task
included. The analysis closely follows that presented in [6].
A task Tk, 1 5 IC 5 n will meet all its deadlines under all
phasings if its first execution request meets its deadline under
the worst case phasing. The first execution request for rk will
meet its deadline, if and only if there exists a time t before task
r k ' s deadline at which CI, units of work for rk and all work
of priority higher than IC is completed. Under the worst case
phasing, the total demand for processor time at time f To is
given by (70 + co 1-1 + E:=, C - 1 ,where the first two
terms correspond to the maximum possible execution time of
ro. Thu\ Tk will meet its deadline if

subsequent execution requests. 0

k +cc; ;=1 iB1) - / t } 5 1. (4)

The minimizations in (l) , (3), and (4) call for finding the
minimum of an expression with respect to a continuous vari-
able t. The ceiling functions are step functions, consequently
the terms in the expression are piecewise continuous and
decreasing functions. This means that the formulas need to be
evaluated only at points where the expression is discontinuous,
that is the times t which are multiples of T, for all 1 5 i 5 k.
One fairly efficient method to determine schedulability of a
task set is to compute the sequence of time points {Se, ! =
0 , 1 , . . .} with

If there exists an e L 1 such that St = SE+^ 5 Tk, then
'Tk is schedulable. If there exists .!! 2 1 such that Se > T k ,
then Tk is not schedulable. This check must be carried out for
k = 1 , 2 , . . ' , n .

Iv. LEAST UPPER BOUNDS ON SCHEDULABILITY

In this section, we develop least upper bounds on task set
schedulability generalizing the results of Liu and Layland [2]
to the case of task sets that contain a high priority server
task, a PS task or a DS task. The least upper bounds provide
sufficient conditions for task set schedulability in the sense that
if the task set utilization lies below the bound, all periodic task
deadlines will be met. If, however, the utilization lies above
the bound, then the necessary and sufficient schedulability tests
given in (4) must be used to determine whether the task set
is schedulable.

Given that the PS and DS tasks behave differently from the
hard deadline periodic tasks, it is useful to keep the server
task (DS or PS) utilization Uo = Co/To distinct from the
total periodic task utilization U,,,, = 111 + . . + U , where
U, = C,/T,. Suppose that Uo is fixed. We wish to find a

STROSNIDER et al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 77

least upper bound on Up,, denoted by PS,(UO) and DS, (UO)
respectively for any given utilization UO for the PS or DS
task. Any periodic task set with utilization less than or equal
to PS,(Uo) or DSn(Uo) is schedulable in the presence of a
high priority server task having utilization UO. The bound is a
least upper bound in the sense that for every Up,, > PS,(Uo)
or DS, ([io) there exists a nonschedulable task set having
utilization Up,,. We will determine these least upper bounds
for both high priority Polling Servers and Deferrable Servers.

A. The Case of Two Periodic Tasks

To illustrate the ideas, we begin with the special case of
two periodic tasks. Consider the situation with no DS task
and two hard deadline periodic tasks 70 and 71. The high
priority periodic task could be a Polling Server. Note that the
analysis for the PS is identical to the case of determining the
new least upper bound given that the utilizationof the highest
priority periodic task is fixed. The resulting bound must in all
cases be equal to or greater than the Liu and Layland least
upper bound. Assume that Co and To and TI are given. Let
R1 = T1/?;, 1. We ask how large C1 can be and still have
all task deadlines satisfied under all phasings of TO and 71.

Assuming the worst case phasing, the maximum utilization
for U1 = C,/T1 = C1/R1r) is given by

if k I R1 I k + Uo

for IC = 1 , 2 , For any given value of U,, the maximum
value of U1 varies from a maximum of 1 - UO when R1 = 1 to
a minimum of e where R1 = l+Uo. The least upper bound
onU1isthereforegivenby(l--Uo)/(l+U"),O 5 L'O 5 1.The
total schedulable utilization is minimized when Uo = fi - 1.
For this value of Uo, the total schedulable utilization becomes
2 (& - 1) = 0.828, the Liu and Layland bound for two
tasks. However, when U,, is fixed, the least upper bound on
schedulable utilization, PStot(UO), is given by

PSt,t(Uo) = (1 + Ui)/(1 + UO) . 0 5 Uo 5 1. (6)

This two-task least upper bound is plotted in Fig. 1 as a
function of the utilization of the high priority task Uo, along
with the corresponding DS two-task least upper derived below.

The same type of analysis can be carried out for a high
priority DS task, 70, and one periodic task, 71. Again we
assume C'o.To, and TI are specified, and we seek the largest
value of C1 for which all deadlines of 71 are met for all task
phasings. The largest value of C1 depends upon C0,To and
R1 and is given by

C1 =
TI - 2Co if 15 R1 5 1 + U,
 TO - CO) if k + UO 5 R1 5 k + ZUo, k L 1
TI - (k + 2)Co if IC + 2U0 5 Rl 5 k + 1 + UO, IC 2 1.

(7)

0.8 4

0.0 0.2 0.4

UO Utilization
Fig. 1 .
dashed: L&L.

Two-task least upper scheduling bounds. Solid: polling; dotted: DS;

Converting (7) to the maximum schedulable utilization of 71,

we find it to be

P -

The above formulas provide least upper schedulability
bounds for one lower priority periodic task as a function
of UO, the DS utilization, and R1 = Tl/TO . We can also
find the value of Rl which minimizes U1. Minimizing (8)
over R1 we find

I%71(Uo) =
min(1 - 2U0, (1 - [io)/ (1 + ZUo)) = B1 (Uo) O <= Uo 5 0.5

0.5 5 u, <= 1 .

(9)

The resulting least upper bound on total utilization for the
two-task DS case is

{o

DStOt(U0) =
rnin(1 - Uo, (1 + 2U,2)/(1 + ZUo)) if

if
0 5 Uo 5 0.5
0.5 5 UO 5 1 '

(10)

This least upper bound is plotted in Fig. 1 along with the
corresponding PS least upper bound, and the Liu and Layland
least upper bound. We only plotted the bound for the range

78 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44. NO. I . JANUARY 1995

0 5 UO 5 0.5. Above this range, no periodic task q is
schedulable, and the entire processor becomes devoted to
aperiodic task processing.

The decrease in total schedulable utilization that occurs
when a DS task with utilization UO replaces an ordinary
periodic task with utilization Uo for 0 5 UO 5 1/4 is given by
l+Uo 1-tzc; - ~ l ~ ~ , ~ ~ ~ ~ b r o l . This is an increasing function
of UO. It is 0 when Uo = 0 and increases to .1 when UO = 1/4 .
For U,, > 1/4 a different least upper bound applies to the DS
case, and a substantial decrease in utilization occurs. As will
be seen in Section 5, the decrease in schedulable utilization
can often pay for itself in the improved aperiodic task response
time performance provided by the DS task.

1-lJo I - U -

B. The General Case

Polling Sewer Bounds: We now tum to the general case
when there is an arbitrary number of periodic tasks. We first
consider the case of no DS server task but n + 1 periodic tasks
where the highest priority task, TO, has fixed utilization of [i o .
This highest priority task could be a PS task. We will later
replace this task with a DS task.

Although the development of the least upper bounds for
the PS are general for a PS running at any priority, we limit
our discussion to the case where the PS is the highest priority
task which is the case that will later be compared to the DS
which is the primary focus of this paper. We consider a task
set T ~ , . . I , T~ where TO is the PS task with a utilization UO.
We seek to find the least upper schedulability bound, PS, (UO)
such that if the task set has utilization no greater than PS,(Uo),
then it is schedulable using the rate monotonic algorithm.
However, for every utilization U > PS,,(Uo) there exists an
unschedulable task set with a task having utilization (10 and
the task set having total utilization U .

The development of the least upper scheduling bounds for
the general case for periodic task sets with a PS task is similar
in form to the two-task case developed earlier but much more
complicated. As such, we limit our in-line discussion to a
summary of the PS bounds and provide the formal derivations
in Appendix A. Appendix A proves that the least upper
schedulability bound for total periodic task set utilization with
a fixed P S task utilization of 0-0 to be

/ / '3 \ I / , \

Equation (I 1) has two terms, the first gives the utilization
of the periodic tasks, while the second corresponds to the
utilization of the Polling Server. Letting n -i m, one can
find the limiting value for the least upper bound,

/ n \

Equation (12) is a generalization of the Liu and Layland
bound of fn2 in which the highest priority task has a utilization
fixed to be UO. A graph of this bound is given in Fig. 2 . One
can see that there is very little change until UO becomes very
large. For example, when UO = 0.25,PSt,oc(Uo) = 0.720,

0.78

0.76

0.74

0.72

0.70
I

I I I I r

0.0 0.2 0.4

UO Utilization
Fig. 2.
L&L.

Polling server least upper scheduling bound. Solid polling; dashed:

only slightly larger than Ln2 = 0.693, the usual Liu and
Layland bound.

Equation (1 1) shows that if one has a polling task with
utilization UO, then all periodic task sets consisting of n
standard periodic tasks (in addition to the polling task) with
total utilization no greater than n((- 1) will be
schedulable. We now wish to determine a similar expression
when the polling task is replaced by a DS task at the highest
priority level with utilization UO.

Deferrable Sewer Bounds: We now tum to deriving least
upper scheduling bounds for task sets which have a DS task
as the highest priority task and n standard periodic tasks. In
Section 3 we showed that the worst case phasing allows the
DS task to capture the first 2Co units of execution time, and
3Co time units during [0, Go + TO]. Consequently, a DS task
with utilization UO can consume more processing time than
an ordinary periodic task with utilization UO over the same
interval. Consequently the least upper schedulability bound
when a DS is included will be smaller than that derived in the
previous section for a Polling Server.

The formal development of the DS case is more complex
than the PS case and is included as Appendix B. We only
summarize the bounds in this section.

The development of least upper bounds for the DS derived
in Appendix B requires the analysis of three different cases
depending upon whether: 1) TI and T, are both smaller than
TO + Co, 2) TI and Tn are both larger than TO + 2C0, or 3)
TI is less than TO + GO. but T, is larger than 70 + 2C0.

We summarize the least upper bound on total schedulable
utilization for Case 1 as a function of R, = T1/To and
u, = Co/T,, 0 5 u, 5 1/2.

STROSNIDER et al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 79

If T, < TO + CO (which entails R1 5 1 + UO) then we have
(13) found at the bottom of the page.

The bounds corresponding to TO + 2Co 5 T,, for Cases 2
and 3 may be summarized as (14) found at the bottom of the
page. If we choose R1 to minimize the above expressions, we
find the least upper bounds on total schedulable utilization for
the case of a high priority DS task and an arbitrary number
of periodic tasks to be given by

Note that the least upper bound is a combination of Case 1
and Case 3 with Case 3 providing the bound for 0 5 UO 5 $
and Case 1 providing the bound for 4 5 UO 5 i. The
Case 2 bound is greater than Case 3 over the entire range of
0 5 UO 5 $ and thus it does not contribute to the composite
least upper scheduling bound given in (15).

The least upper scheduling bound given by (15) is plotted
in Fig. 3 where it is compared with the least upper scheduling
bounds for the high priority PS task and the limiting Liu and
Layland bound of In 2. The difference between the polling
bound and the DS bound is 0 for Uo = 0. 0.049 for
Uo = 0.1, 0.077 for UO = 0.2, 0.093 for UO = 0.25, 0.1073
for UO = 0.3 and 0.118 for UO = 1/3.

C. Designing a Deferrable Server

In this section, we address the question of designing a
Deferrable Server for a real-time system. This question has two
distinct facets: 1) determining whether to use the DS approach
at all and 2) selecting the period and capacity for the DS task.
The goal of any aperiodic service algorithm is to create a high
priority resource for use by aperiodic tasks which will make
it appear to those aperiodic tasks as if they had exclusive
use of the full processing resource. To achieve such ideal

0.75

0.70

U c

m
c
0 .- 3 0.65

CI

0.55

0.50

0.0 0.2 0.4

UO Utilization
Fig. 3.
DS; dashed L&L.

Composite DS least upper scheduling bounds. Solid: polling; dotted:

behavior, the aperiodic tasks must be serviced immediately
upon arrival, and their processing can only be delayed by the
queuing effects of other aperiodic tasks, not by interference
from the hard deadline periodic tasks. The DS task offers the
promise of such transparent aperiodic service; however, only if
two conditions are met: 1) the DS task must run at the highest
priority level (or else it will be subject to interruptions from
the periodic tasks) and 2) the capacity of the DS in each period
must be sufficiently large to service a busy period of aperiodic
tasks arriving during a single DS period. The first condition is
simple to achieve. We need only select TO 5 TI to ensure that
the DS task is accorded the highest rate monotonic priority.

80 IEEE TRANSACTIONS ON COMPUTERS. VOL. 44, NO. I , JANUARY 1995

Creating a large enough capacity for the DS task to service the
aperiodic requests on demand is a more complicated issue, and
whether or not it is possible will depend upon the particular
task set in question.

The second condition for transparent aperiodic server oper-
ation leads one to maximize the DS task capacity subject to
the periodic tasks remaining schedulable. Section V will show
that the DS algorithm provides essentially ideal performance as
long as the capacity of the DS task is sufficient to service aperi-
odic arrivals. Thus, one should use the necessary and sufficient
schedulability conditions developed in Section I11 to maximize
the size of the DS which can then provide transparent service
at higher aperiodic loading levels. However, computing the
maximum sized DS task consistent with meeting periodic task
deadline requirements is significantly more complex for the
necessary and sufficient conditions than for the least upper
bound. The additional complexity associated with analyzing
the necessary and sufficient conditions for the DS on-line may
be prohibitive in some highly dynamic systems.

Generally, for every choice of DS period TO with TO 5 T I ,
there is a maximum C0 given by the necessary and sufficient
schedulability test. Clearly, once 2'0 has been selected, one
would want to use the largest possible value for CO. Generally,
as To increases, C0 increases as well and this usually results
in a larger utilization for the DS task. However, as the DS task
period increases relative to the periodic tasks, anomalies can
occur where a shorter period DS task could have a larger U O ,
even a larger Co than a DS task with a slightly longer period.
We next show that large values of To are also desirable.

To show that large values of 7;) are desirable, suppose
we compare two possible DS tasks, DS1 and DS2, having
equal utilizations but different periods, 7:11 < TO^. There are
two fundamental reasons why DSp is better than DS1. First,
since the two tasks have equal utilizations, C01 < C02, the
larger capacity DS task makes it possible to service more
aperiodic tasks and/or longer aperiodic tasks without inter-
ruption. Consequently, large values of DS capacity increase
the probability of aperiodic arrivals being serviced with no
periodic interference, thus minimizing their response time.
Second, the longer DS task period results in less wasted high
priority aperiodic service capacity. To see this, consider the
following example. Suppose that Go1 = 1 and To1 = 10,
while (702 = 2 and 7'02 = 20. DS2 provides 2 units of service
capacity any time during [0, 201. Any unused capacity is lost
at time 20. DS1 also provides 2 units of service capacity
during [0, 201; however, I unit of capacity will be lost at time
10 if it is not used during [0, lo]. Moreover, DS1 can only
service tasks whose service requirement is no greater than 1
to completion, whereas DS2 can service tasks whose service
requirement is no greater than 2 to completion. Generally,
the longer period DS task can retain high priority aperiodic
service capacity over longer periods. This is the fundamental
advantage that the DS task holds over the PS approach. This
capability allows the DS task to better match its service to
variations in aperiodic arrival pattem. Thus this advantage
should be maximized.

In summary, if the largest DS task utilization that can be
attained when To = TI is as large as the maximum attainable

DS task utilization for shorter periods, then one should select
To = 7'1 and these maximum attainable utilizations should
be determined using the exact schedulability equations. If,
however, the attainable utilizations is significantly increased
by choosing a smaller value of the DS task period, then
the aperiodic performances that can be achieved with these
two different choices must be directly compared. The smaller
period DS task should be used only if its capacity is large
enough to provide adequate continuous aperiodic service. This
consideration is part of a more general issue of whether the
DS should be used at all. We next turn to that question.

Once the choice of DS task has been made, one must
ask whether it is appropriate to use the DS approach com-
pared with other possible methods of providing high priority
aperiodic task service. We first note that application studies
[121, [101 clearly demonstrate that large aperiodic response
time improvements are possible through the use of a suitable
DS task. However, it should be noted that in both [12] and
[lo] the mean aperiodic service times were small relative
to the DS task capacity, CO. For such cases, as long as
the DS task is not overloaded, most aperiodic requests will
be serviced at the highest priority level which results in
large reductions in aperiodic response times. More generally,
one crucial comparison that must be made is the expected
aperiodic busy period length versus CO. If aperiodic arrivals
are assumed to form a Poisson process and have average
service requirement E(S), then the mean busy period length,
assuming aperiodics are not interrupted by periodics, is given
by E (B) = E(S)/(l - p) , where p is the traffic intensity of
the aperiodic stream taken by itself. For the DS to be highly
effective, one must have E (R) < C0. If this inequality does
not hold, then a significant fraction of the aperiodic arrivals
will be serviced partially or completely at the background
priority level. This reduces the effectiveness of the DS task.
A Polling Server would exhibit a similar lack of effectiveness
under similar conditions; however, the Polling Server has a
larger capacity than the DS task. For long aperiodic requests,
the effect of redistributing the aperiodic service opportunities
is averaged out and the aperiodic response times converge
towards background. Therefore, the DS task is not appropriate
for servicing long aperiodic requests such as file transfers.

We now address the question of aperiodic response times.
Given a high priority DS task with utilization UO, determining
whether aperiodic response time requirements will be met is
more difficult than designing a schedulable DS task. First,
consider alert class, guaranteed service. Alert class guarantees
are provided assuming a minimum interarrival time for alert
class tasks. Dedicated processing capacity or bandwidth is then
reserved to service each alert task essentially as if it were a
periodic task with a period equal to the smaller of its minimum
interarrival time and its deadline. The guaranteed, alert class
service provided by the DS task is very expensive from a
resource allocation standpoint since the minimum interamval
time of alerts is generally much less than the average arrival
time. Further, running the DS tasks at the highest priority
within the rate monotonic framework requires that the DS task
period to be equal to or less than the shortest period within
the underlying periodic task set.

STROSNIDER et al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 81

Alert class guaranteed service and soft deadline aperiodic
service can be provided concurrently by using priority discrim-
ination within the DS task, that is by reserving the required
DS capacity, C0,,lerts to be used exclusively by alert class
tasks. Altematively, one could construct two DS tasks with
the same period that run at the top two priority levels in the
system. These two DS tasks would then divide the available
DS capacity, CO. In either case, the highest priority must be
used to service the alerts with the second highest priority used
for soft deadline aperiodic service.

Generalized, analytic closed form solutions for determining
whether arbitrary mixes of aperiodic soft deadline tasks will
meet their desired response time requirements currently do not
exist [l l] . However, for the special case of small aperiodic
service times (aperiodic service times much less than the
DS capacity CDS) and when the loading of the DS task by
aperiodic arrivals is less than 70%, essentially all aperiodic
arrivals are serviced at the highest priority, and an MIMI1
queuing analysis in which the periodic load is ignored accu-
rately predicts soft deadline response times as will be shown
in Section V. For higher DS loadings, the DS capacity is
sometimes eshausted which results in some aperiodic arrivals
being serviced at background priority and a queue of aperiodic
tasks when the DS capacity becomes available. The simple
MIMI 1 queuing model which ignores the peiodic tasks breaks
down at this point. Attempts to develop more sophisticated
queuing models which accurately predict aperiodic response
times for the highly loaded DS case have been unsuccessful
1113.

V. APPLICATION STUDIES SUMMARY

In this section we summarize the results of simulation
studies which compare the response time performance of the
DS algorithms against traditional Background and Polling
techniques. As an additional figure of merit in evaluating the
response time performance of the algorithms, we have included
a lower bound on aperiodic response times. This bound is
derived by assuming there is no periodic load, so all aperiodic
tasks are served at high priority. The mean aperiodic response
time can be calculated for this bound using an MIMI1
queuing analysis. The M / M / l case with no periodic load was
one of the cases used to validate the simulator. At the end of
this section, we summarize results from other DS applications
in processor scheduling and in Local Area Network Media
Access (MAC) scheduling.

In each experiment, we evaluate the Polling and the DS
algorithms using two distinct utilizations; one derived using
necessary and sufficient scheduling conditions given by (3)
and (4), and the other (smaller capacity) server utilizations
derived from the least upper bounds given by (15). Each of the
following nine experiments use 10 randomly selected periodic
task sets with the minimum periods restricted to be greater
than 55 . The maximum periods for the task sets ranged from
210 to 2,310 units. The relative phasing of task periods within
each task set was chosen at random. The nine experiments
correspond to periodic task set loadings of 40%, 60% and 80%
and aperiodic mean service times which are 1%, 2% and 5% of

Experiment 1
1 - Background

-d Poll, Bound
b- - - - -# Poll, Exact
(f ---o DS,Bound
x- - -x DS,Exact
-0 MlW1

/ /

0.5 0.6 0.7 0.8 0.9

Total Load

Periodic load = 406, Aperiodic mean service time = l/p = 0.55. Fig. 4.

the server’s period (55). The aperiodic task arrival times were
modeled using a Poisson arrival process, and the aperiodic task
service times were modeled using an exponential service time
distribution. The set of nine experiments allows us to evaluate
the sensitivity of the DS algorithm to both periodic loading
and mean aperiodic service times.

Fig. 4 summarizes the results of Experiment 1 . In this and
all other figures “exact” refers to a DS or PS determined
using necessary and sufficient schedulability conditions while
“bound” refers to a DS or PS determined by least upper
bounds. For this experiment, the periodic load was held
constant at 40%, while the aperiodic load was increased
from 10% to 50% (resulting in a total load ranging from
50% to 90%). Using the least upper bounds for the Polling
Server and Deferrable Server resulted in server capacities
of 14.75 and 12.62 units respectively during each 55 unit
server period. The exact schedulability conditions resulted
in server capacities that varied from 27.41 to 32.94 units
for Polling, and 20.38 to 23.71 units for the Deferrable
Server for the 10 randomly selected periodic task sets used
in this experiment. In the following discussions, it is useful to
consider the traffic intensities on the servers when evaluating
their relative performance. We define the server traffic intensity
as TI = UaP/Us where U,, is the aperiodic load and Us =
C,/T, = Utilization of the server. When TI is less than 70%
and E (S) < CO, then most aperiodic requests are serviced by
the DS task without any interference from the periodic tasks.
As TI increases beyond this level, an increasing fraction of
the aperiodics will be serviced as background tasks which will
substantially degrade aperiodic responsiveness.

Both the Deferrable Servers provide nearly optimal aperi-
odic response time performance up to a total of 60%. These
response times are nearly optimal in the sense that they
are very close to the performance that would be obtained
in the absence of a periodic load component. Note that the

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44. NO. I . JANUARY 1995

aperiodic tasks are serviced at the full processor speed, not
at a degraded rate proportional to the server’s utilization.
In this range, for small aperiodic task sizes, the aperiodic
average response times can be accurately predicted by sim-
ple M / M / l queuing models that ignore the periodic load
component. Over this region the DS algorithm enjoys more
than a factor of 10 response time advantage over Background,
and more than a factor of 7 response time advantage over
Polling.

As the total load increases over 60%, the servers’ per-
formance diverge from the ideal with the smaller utiliza-
tion “bound” servers degrading more quickly than the larger
“exact” servers. At the 70% total load point, the traffic
intensity on the “bound” Polling and DS servers are 112%
and 130% respectively. Unlike conventional queuing systems
where traffic intensitiks in excess of 100% result in an in-
finite expected queue length, the Polling and DS servers
assign Background priority to arrivals when their respective
capacities are exhausted. These servers thus provide either
highly responsive aperiodic service when there is sufficient
capacity, or Background service when their capacities are
exhausted. The DS “exact” server, with a traffic intensity of
about 75% still enjoys performance nearly equivalent to the
M / M / 1 performance with essentially all aperiodic arrivals
being serviced at high priority. The higher capacity “exact”
DS server provides more than a factor of three performance
advantage over the “bound” DS server, and advantage factors
of more than 7, 8 and 13 over Polling “exact”, Polling
“bound”, and Background respectively at the 60% total load
point.

When the total loading is increased to 80% the DS “exact”
performance has diverged slightly from the MIMI1 lower
bound. At this point, the traffic intensity on the DS “exact”
server is loo%, and a significant fraction of the aperiodic
arrivals are assigned Background priority. Near the 80% total
load point the DS “bound’ and PS “exact” performance
measures intersect. At this loading, the traffic intensity on the
DS “bound” is 174% which, on average, results in 42% of
the aperiodic arrivals being serviced at Background priority.
The traffic intensity of the PS “exact” is only 73%. At this
point, the relative server size advantage of the Polling “exact”
(30 units to 12.62 units) outweighs the Deferrable Server’s
capability to defer aperiodic service until needed. The larger
capacity DS “exact” still maintains a substantial performance
advantage over the other servers with advantage factors of
more than 4, 5, 6, and 9 over DS “bound”, PS “exact,” PS
“bound,” and Background.

At 90% total load, the DS “exact” is saturated with a
traffic intensity of 125%, and its performance sharply degrades.
The other servers similarly continue to degrade with the
DS “bound” performance converging towards PS “bound.”
The preceding experiment demonstrated the ability of the
DS algorithm to convert excess periodic task slack time into
highly responsive aperiodic service. For this case, the DS
“exact” provided response time service nearly identical to the
expected response times in the absence of periodic loading.
In effect, the DS algorithm provides nearly optimal service
up to the loading at which it becomes nearly saturated, at

Experiment 2

0.70 0.75 0.m 0.85 0.90

Total Load

Periodic load = 60%, Aperiodic mean service time = l / p = 0.55. Fig. 5 .

which point its response time starts to fall off sharply as a
significant portion of the aperiodic arrivals must be serviced
at Background priority.

For Experiment 2, illustrated in Fig. 5, we increased the
periodic load component to 60%. The aperiodic load was then
increased from 5% to 30% for a total loading range from
65% to 90%. Using the least upper bounds for the Polling
Server and Deferrable Server results in server capacities of
5.37 and 3.61 units respectively during each 55 unit server
period. The exact server capacities varied from 2 I .99 to 15.3 1
units for Polling, and 19.92 to 11.16 units for the Deferrable
Server across the 10 randomly selected periodic task sets
used in this experiment. Again, the aperiodic response time
in the absence of the periodic load component is plotted for
comparison. Once again, we note that the larger capacity DS
“exact” provides nearly optimal service across most of the
range until it becomes saturated.

At 65% total load (5% aperiodic load), the PS and DS
“bound” servers’ p&formance are already diverging from their
corresponding “exact” servers. This is because of the very
small capacities for the “bound’ servers with their resultant
traffic intensities of 101% and 138% respectively. As we
increase the aperiodic load above 5% the “bound’ servers’
performance quickly degrades towards Background with a
relatively low percentage of aperiodic arrivals being pro-
vided high priority service. The bulk of these arrivals are
scheduled at Background priority which results in their aver-
age performance converging toward the average Background
performance. In contrast, the “exact” servers have sufficient
capacity to service the majority of aperiodic anivals at high
priority thus creating a widening performance advantage over
Background.

The DS “exact” provides the best response time perfor-
mance maintaining essentially the M / M / 1 ideal performance
out to about 78% total loading. At 65% total loading the

STROSNtDER et ai.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 83

performance advantage factors are more than 3, 16, 17, and
39 respectively compared to DS “bound”, PS “exact,” PS
“bound”, and Background respectively. The DS “bound” per-
formance intersects the larger PS “exact” performance at about
72% total load. As the aperiodic load is increased to 13% (78%
total load), the DS “exact” performance advantage further
widens to more than 15, 25, 29, and 40 over PS “exact”, DS
“bound”, PS “bound”, and Background respectively. At a 13%
aperiodic load the traffic intensities on the PS and DS “exact”
servers average 53% and 64% respectively thus accounting
for their ideal performance up to this loading level. The PS
“bound” performance parallels the DS “exact” performance
across the range with each degrading as the servers start to
saturate in the mid 80% total loading range. At 90% total load
the DS “exact” performance advantage factors are in excess
of 3, 7, 8 and 9 for PS “exact” DS “bound,” PS “bound’ and
Background respectively.

For Experiment 3, illustrated in Fig. 6, we further increased
the periodic load component to 80%. The aperiodic load was
then increased from 2% to 10% for a total loading range from
82% to 90%. At these high periodic utilization levels, it i s
not possible to use the “bound’ servers, and it is necessary to
use explicit task information to determine the “exact” servers
for DS and Polling. The “exact” server capacities varied from
10.54 to 1.82 units for Polling, and 10.73 to 1.39 units for the
Deferrable Server across the 10 randomly selected periodic
task sets used in this experiment. The DS “exact” provides the
best performance across the range diverging relatively slowly
from M / M / l ideal performance as the DS server becomes
saturated. The DS “exact” performance is from 2 to 16 times
better than the PS “exact” performance, and 9 to 70 times
better than Background performance.

It is useful to jointly compare the results of the last set
of three experiments at 40%, 60% and 80% periodic loading.
Adjusting to the differing scales needed to accommodate the
widening relative ranges, the DS and PS “exact” performances
were nearly invariant to the increasing periodic load. In
essence these “exact” servers were of sufficient capacity to
service nearly all aperiodic arrivals at high priority. In contrast,
the lower capacity “bound” servers’ performance degraded
quickly with increasing periodic load. This indicates that there
are significant performance advantages to using the largest
possible server as determined by necessary and sufficient
schedulability conditions. Whenever possible, one should use
the larger “exact” servers.

The above set of three experiments evaluated the relative
performance of the DS algorithm for short service times and
increasing periodic load. We also evaluated the algorithm
for increasing aperiodic mean service time and found the
DS performance to degrade with increasing aperiodic service
times. Fig. 7 illustrates the results for the composite set of
nine experiments. Each row reflects increasing periodic load
components of 40%, 60% and 80%. Each column reflects
increasing aperiodic mean service times with the mean ser-
vice time doubling in each subsequent row. Experiments 1
through 3 reflects the results for the relatively short aperiodic
service times already discussed above. Experiments 1, 4, and
7 summarize the results of increasing aperiodic mean service

Experiment 3

- - Badcground
#-----+ Poll. Exact
X- - * DS.Exact

0.82 0.84 0.86 0.88 0.90

Total Load
Periodic load = 80%, Aperiodic mean response time = l/p = 0.55. Fig. 6.

time with the periodic load component at 40%. As we increase
the mean service time, the servers’ response time performance
degrade more quickly from the lower bound M/M/l perfor-
mance. Note that the servers’ traffic intensities are constant
at corresponding points among the three graphs. Thus the
servers’ performance are sensitive not only to loading, but
also to aperiodic job size.

As we examine the graphs representing 80% periodic load,
we note that with increasing aperiodic mean service times
the performance of the “exact” servers move further away
from M / h l / l performance as the service time is increased.
However, in all cases, DS “exact” provides the best perfor-
mance over the broadest range with significant performance
advantages in all cases. In contrast, DS “bound” performance
(columns 1 and 2) starts out nearly optimal, but degrades
toward Polling as the load is increased with the PS “exact”
providing better performance at high loading. At this point
the relative size advantage of the PS “exact’ outweighs the
capability of the DS server to defer service until needed. For
each of the experiments, the DS “exact” provided the best
performance. In all cases the “exact” servers’ relative perfor-
mance improved over Background as the periodic loading was
increased. In effect, the servers have the ability to break up
large periodic task busy periods while still meeting all periodic
task deadlines.

The above experiments demonstrate the DS algorithm’s
ability to reduce aperiodic response times in hard real-time
environments. In all cases the algorithm maintained guar-
anteed periodic response times while minimizing aperiodic
response times by converting excess periodic slack time into
high priority aperiodic service. Earlier simulation studies for
processor scheduling demonstrated that the DS algorithm
could significantly reduce aperiodic response times while
maintaining guaranteed periodic task deadlines. Response time
improvements of 90% were demonstrated (12).

84

....I

A

/.*----*
*, _ _ _ _ -...- #---

.*-......-- 0 .

e - - u

- e - -
-*--e----o--*-----i) .

IEEE TRANSACTTONS ON COMPUTERS. VOL. 44, NO. I, JANUARY 1995

Experiment 1

22 - - Background
a- Poll, Bound

20 - #- - - - -# Poll, Exact
e- 4 DS.Bound

I , I

0.5 0.6 0.7 0.8 0.9

Total Load
Periodic Load - 40%. l/mu = 0.55

Experiment 4

28

26

24

E 22
F 20

a 10

0 6
i 6

4

2

0

- Background - - Poll, Bound
#-- - - -# Poll. Exact
e- 4 DS,Bound
* - -x DS,Exact -

- e Q MAW1

0 --*-&--e----o 0

1

0 5 0 6 0.7 0 8 0 9

Total Load
Perlodic Load - 40%. l/mu = 1 10

Experiment 7

45
*- Background

40 - -- Poll, Bwnd
#-- - - -# Poll, Exact

0 -
I

0 5 0.6 0.7 0.8 0 9

Total Load
Periodic Load - 40%, (/mu = 2 75

Fig. 7. Composite experiments.

Experiment 2 Experiment 3

0.70 0.75 0.80 0.85 0.90

Total Load
Periodic Load - 60%. llmu I 0.55

Experiment 5

0.82 0.84 0.86 0.88 0.90

Total Load

Experiment 6

Periodic Load - BOK. llmu 0.55

0.70 0.75 0.80 0.85 0.90

Total Load
Periodic Load = 60%. llmu = 1.10

Experiment 8

110

100

90

F 8 0
E

1::

- Eackgrwnd

1

0.82 0.84 0.86 0.88 0.90

Total Load
Periodic Load - SOX, llmu - 1.10

Experiment 9

1 20

110

100

E 9 0

$4 80

70

60 1 ;
P . ,
2 2 0

10

0

STROSNIDER et ai.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 85

The above experiments demonstrated the capability of the
DS algorithm to greatly reduce soft deadline aperiodic re-
sponse times in hard deadline, real-time systems. The DS
algorithm can also be used to provide guaranteed, highly
responsive (alert class) aperiodic service. This latter capability
was demonstrated in application studies in the Local Area
Network (LAN) media access (MAC) scheduling for both
IEEE 802.5 Token Rings (10) and SAE-9B High Speed Ring
Bus (HSRB) (I 3, 12). In both application studies, media access
scheduling models supporting global, prioritized contention
resolution were first developed. The DS algorithm was then
applied. In both of the LAN studies the DS algorithm provided
guaranteed alert class aperiodic deadlines and greatly enhanced
aperiodic response times while still maintaining guaranteed
periodic deadlines. The response time improvement for the soft
deadline aperiodic tasks was nearly two orders of magnitude
in both cases.

VI. CONCLUSION

This paper has presented the theoretical foundations for
the Deferrable Server algorithm which provides a solution
to the problem of jointly scheduling hard deadline periodic
tasks and hard and soft deadline aperiodic tasks. To provide
a fair comparison, both necessary and sufficient conditions
and least upper bounds were developed for the Deferrable
Server algorithm and the more conventional polling technique
of scheduling aperiodic service in hard-time environments.
Taking advantage of the fact that there is typically no ad-
vantage for the system for periodic tasks completing early, the
DS algorithm converts the excess periodic task slack time into
highly responsive aperiodic class performance. The algorithm
has been used to introduce highly responsive, guaranteed alert
task aperiodic service while still maintaining periodic task
guarantees as well as providing response time improvements
of an order of magnitude for soft deadline aperiodic tasks. The
algorithm has been shown to provide nearly optimal aperiodic
response time performance for relatively short aperiodic mean
service times up to very high server traffic intensities. As the
mean service times were increased, the DS response time
performance diverged more quickly from the optimal non-
interfering case. Other application simulation studies in both
processor and LAN media access scheduling have shown
similar results and sensitivities.

APPENDIX A
POLLING SERVER LEAST UPPER BOUNDS

Section IV developed least upper schedulability bounds for
the case of two tasks where one of the tasks was a high priority
Polling Server, PS, task. The schedulability bounds for the
general case of n periodic tasks were then summarized in (4).
The supporting proofs for the PS general case are provided
in this appendix.

The analysis essentially follows that of Liu and Layland.
One considers full-utilization tasks sets in which any one of
the tasks has a fixed utilization of U . These are task sets which
are schedulable, but if the computation requirement of any of
the tasks were to be increased, a deadline would be missed.

We seek the full-utilization task set with minimum utilization.
The utilization of that task set will be PS,(U). We refer to
such a task set as a worst case task set.

Assume TO 5 TI 5 . . . 5 T,. We first show that we can
restrict attention to task sets that satisfy T,/To < 2. Suppose
instead T,/To 5 2 and one of the tasks has utilization fixed at
U. Then if the utilization of neither TO nor T, has been fixed, a
full-utilization task set with less utilization can be constructed
by modifying TO and T, as follows: assume T, =]ETo + r , k 2
%,0 5 r < TO, and let T,* = kTo,CG = Co,T,* = T,
and C i = C, + (k - 1)Co. The new task set has less total
utilization and is either full-utilization or a deadline is missed
and the utilization of the other periodic tasks must be reduced
to achieve schedulability. If TO has utilization ZTo, then one
can modify TO by letting T,* = kT0, and C;l,. = kCo and
apply the preceding argument if Tn/Tl 2 2. The result is
a full-utilization task set with no greater utilization. If T,

has utilization U , then one can define TT = LgJT, and

C,* = C, , 0 5 J 5 ri- 1. The result is a task set satisfying
Tn/Ti < 2 which is either full utilization or whose utilization
must be further reduced so that deadlines are not missed. Thus
we can restrict attention to the case Tn/To 5 2.

The second step is to characterize the worst case task
set assuming T,,/To < 2 with one task having a utilization
li. Using the argument of Liu and Layland we find C, =
T,+l- T,, 0 5 i 5 n - 1 and C, = 27b - T, to be the choice
of C, resulting in the minimum utilization. The resulting total
utilization is given by

Defining & = Ti/Ti-l: 1 5 i 5 n, this expression becomes

n

-
i=l

n n

i=l , = I

Here, R, 2 1, nrZl R, < 2 and one of the tasks has utilization
11. The latter condition implies R, = 1+U for some 1 5 z 5 n
or 2 / n y = , R, = 1 + U .

Some of the subsequent analysis is based on the following
lemma:

LemmaA.1: Let x > 0, y > 1 and H(R) = cy=, R, + ./nrZl R, - (n + l) , where R = (R I , . . . , ~) . Let S, =
{RIR, 2 1,n:=, R, i Y). Then

86 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 1, JANUARY 1995

Proo$ Consider any RES, with R, < R3 for some
i # j . Define R* by letting R: = R; = (&R3)ll2 and
R$ = Rk, k # i , j . It follows that R*&, and H(R) -

(R,"~ - ~ : / ') 2 > O. Consequently, the minimizing R must
be of the form R = R(1,1, . . . , 1). This reduces consideration
to the function H (R) = nR + x/R" - (n + 1) subject to
1 5 R 5 y"". Clearly

H(R*) = R, + R3 - R: - R; = R, + R3 - 2(&R,)1/2 =

Therefore the minimum of H (R) subject to R 5 T J ~ / ' ~
occurs at R = min(z'/("+'),y'/"). Substituting R into
H (R) gives Eq. 17. Equation (18) follows from the fact that

0
A straightforward application of Lemma A. 1 applied to (1 6)

with either R, = 1+U for any particular 1 5 i 5 71 or a simple
minimization argument 2/ n:=l R, = 1 + U yields the least
upper bound on the total utilization where any one task has a
fixed utilization U . We replace U by UO for later comparisons
with the DS algorithm and get

limn-w n(z'/" - 1) = In .c for z > 0.

PS,,,,.,(Uo) = .'((&)I/, - 1) + uo. (20)

Equation (20) has two terms, the first gives the utilization
of the periodic tasks, while the second corresponds to the
utilization of the Polling Server. Letting n -+ x3 one can
find the limiting value for the least upper bound,

Equation (21) is a generalization of the Liu and Layland
bound of h 2 in which one of the tasks has utilization fixed to
be Uo. A graph of this bound is given in Fig. 8. One can see
that there is very little change until Uo becomes very large. For
example, when Uo = 0.25, PSt,30(Uo) = 0.720, only slightly
larger than en = 0.693, the usual Liu and Layland bound.

Equation (20) shows that if one has a polling task at any pri-
ority level with utilization UO, then all periodic task sets con-
sisting of 71 standard periodic tasks (in addition to the polling

task) with total utilization no greater than n ((A) l /n - 1)

will be schedulable. We now wish to determine a similar
expression when the polling task is replaced by a DS task
at the highest priority level with utilization UO.

APPENDIX B
DEFERRABLE SERVER LEAST UPPER BOUNDS

Section IV developed least upper schedulability bounds for
the case of two tasks where one of the tasks was a high priority
Deferrable Server, DS, task. The schedulability bounds for the

0.78 -

z
m 2 0.76 -
c
0 .-
CI

0.74 .- - .-
5
$ 0.72 -
r-0

0.70
I

I I I 1 I

0.0 0.2 0.4

UO Utilization
Fig. 8.
L&L.

Polling server least upper scheduling bound. Solid: polling; dashed:

general case of 7~ periodic tasks were then summarized. The
supporting proofs for the DS general case are provided in this
appendix.

We consider a task set with a high priority DS task, T ~ ,

having utilization UO and n periodic tasks r1 , r, with
To F 7'1 5 . . . 5 T,. The determination of a worst case
task set is facilitated by examining restrictions to the period
ratios. For example, Appendix A showed that Tn/To < 2 is
a necessary condition for a worst case task set. When a DS
task, TO is included at the highest priority, the worst case period
ratios change. There are two necessary condition for a task set
to be a worst case task set: Tn/Tl < 2 and Tn/7b < 2 + [JO.
These conditions can be derived as follows.

Suppose, 70. q , 7, is a task set that fully utilizes the
processor, and suppose T,/Tl 2 2, that is T,, = kTl + r ,
0 5 r < TI with k 2 2. Assuming the worst case phasing, we
modify TI and rT1 to 7; and 7,' as follows. Let C; = GI, T;* =
kT1, C: = C, + (k - 1)Cl and T: = T,. The modified
task set fully utilizes the processor, but the utilization of the
periodic task set is reduced by (k - l)C1(l/TL - l/kT1) > 0.
Consequently T,/Tl < 2 is a necessary condition for the
worst case task set.

We next show that ",/To < (2 + Uo) is a necessary
condition for a worst case task set. Suppose Co + kTo 5
T, < 2Co + kTo for some k 2 1. In the worst case, the
DS task, TO, would run during [Co + kTo,2C0 + kTo], thus
T, could be increased to 2Co + k?b, the task set would
still be full utilization and its total utilization would be
reduced. Consequently, attention can be restricted to the case
2Co + kTo 5 T, < Co + (k + l)T, for k 2 1. Suppose
ZCo + k:To < T, < Co + (k + 1)Tg for some k 2 2. We can

SJXOSNIDER er al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 87

modify the DS task to TA = T,/(2Uo + k) and Cl, = U0T&
Note that TA < TI because T,/T1 < 2, so the DS task
retains the highest priority. The modified DS task runs the
same number of times (k + 2) during [O,Tn], but each is
longer. Consequently, the periodic utilization must be reduced
to maintain schedulability. Therefore, 2Co + kTo < T, <
Co+(k+l)To cannot give the worst case if k 2 2. It remains to
consider the case T, = 2Co + ICTo , IC 2 2. If k 2 3, we modify
the DS task so that TA = To ziy+kfl , and Ch = UoCo.
The utilization is preserved, TA < Tn/2 < TI so the DS task
retains the highest priority. The modified DS task fills more
of [O, T,] than the original, so the periodic utilization must be
reduced to retain schedulability. This leaves only one case to
be considered, T, = 2Co + 2To. Later in this section, we will
give an explicit computation of the worst case utilization for
this case and show that it is larger than that for the other cases.
Once this is done, we will have shown Trh/T0 < 2 + UO is a
necessary condition for worst case periodic task set utilization.

We now turn to developing least upper bounds on the
schedulable periodic task utilization as a function of UO, the
utilization of the high priority DS task. We assume TO 5 TI 5
' . . 5 T,, T, f TO < 2 and Tn/T0 < 2 + UO. The analysis is
carried out by considering three distinct cases:
Case 1 :To I TI 5 . . . 5 T, < TO + Co
Case 2 :TO 5 To + CO 5 Tl I . . . 5 T, 5 2To + Co
Case 3 :To 5 Tl 5 . . . Tk 5 To + Co 5 To + 2Co

(O + 1

5 Tk+1 I ' ' ' 5 Tn I 27'0 + GO
for some k , 1 5 k 5 n - 1.

The goal is to find upper bounds for each of these three cases
as a function of n, UO and R1 = Tl/To. These three bounds
are themselves of independent interest. Minimization over the
three bounds yields the least upper bound on utilization for
the periodic tasks as a function of UO.

Case 1 Bounds: We begin with the simplest case in which
for the worst case phasing, the DS task occupies only the
interval [O.2Co] before T,, the deadline of T,. Specifically,
we assume To 5 TI . . . 5 T, I TO + Co, the task set
fully utilizes the processor, and To and Co are fixed with
Co/To = U o . We seek values of (Cz. Tt), 1 I z 5 n satisfying
the above restrictions for which E:=, C,/T, is minimized.

The following lemma which is based on a similar lemma of
Liu and Layland gives the minimizing values of C, , 1 5 7 5 n
as a function of T, , 0 5 i I n.

Lemma B. 1: Suppose a task set satisfies TO 5 TI 5 . . . 5
T, < Ti, + Co. Under the worst case phasing, C,/T,
is minimized by C, = T,+1 - T,. 1 5 2 I n - 1 and

Proof Suppose Cl = T2 - Tl - t 2 0 for some
E > 0. Since the task set fully utilizes the processor, the
time interval [TI + C1, T2] must be utilized by lower priority
tasks. Suppose 7 2 utilizes the t units of computation. Consider
the modified task set in which only T~ and TZ are modified
by Cf = C1 + t / 2 and Cz = C2 - E . The modified task
still fully utilizes the processor but has utilization reduced by
t(-1/2Tl +l/T2) > 0. Consequently, for minimum utilization
we must have t = 0. Continuing in a similar fashion, no lower
priority task can execute during [TI + C1,T2] and still have

C, = 2(1i - CO) - T,.

minimum utilization. Consequently, a necessary condition is

Next, suppose C1 = Tz - TI + t for some F > 0. Consider
the modified task set in which only 71 and 7 2 are modified
by C; = Tz - T I , C,* = Cz + t. The modified task set
fully utilizes the processor, but the utilization is reduced by
c(l/Tl - 1/Tz) > 0. Consequently, a necessary condition is
C1 5 T2 - Tl. It follows that Cz = TZ - Tl. By repeating
this identical argument sequentially for Cz, . . . , C,, we find
C, = T,+1 - T,. 1 5 i I n - 1. In order for the task set to
fully utilize the processor, Cn = 2(T1 - Cc,) - TrL, and the
lemma follows.

From Lemma B.l, we know that the worst case periodic
utilization corresponds to a task set with computation require-
ments given by:

C, = T,+1 - T,,2 5 i 5 n - I (22)

Cn 2(T2 - C1) - T,. (23)

C1 2 Tz - TI .

The periodic utilization for these tasks is given by

where Ri = Ti/Tip1, 1 I i I 7 ~ .

sub jec t toRI . . .R , 5 l + U o o r R z . - . R n 5 (1+Uo)/Ri.
Using Lemma A. 1 , the bound for n periodic tasks as a function
of R1 and Uo is given by

Letting n -+ 30 we find

DSper,,(Uo, R1)

The above bounds can be further minimized by finding
a minimizing value of R1 E [l. 1 + U o] . The bounds are
minimized by setting R1 = 1 that is by allowing the DS
period to be as large as possible while maintaining the highest
priority. In this case, the asymptotic bounds on periodic task
utilization become

In (l+ uO) +
ln(2(1- U O))

o I UO I
5 5 u, I 1/2 .

(29)

DSper,oo(UO) =

88

1.u

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

-':

0.0 0.2 0.4

UO Utilization
Case 1 bound. Solid: polling; dotted DS; dashed: L&L.

Adding U , gives the least upper bound for total schedulable
utilization of

(30)

Fig. 9 plots the Case 1 bounds along with the bounds corre-
sponding to a PS, and the generalized Liu and Layland case.
If we restrict attention to 0 5 UO 5 1/3, then the worst case
total utilization in Case 1 is

This is a decreasing function of Uo. The total schedulable
utilization for 1/3 5 UO 5 1 / 2 is given by

DSt,t,,(Uo) = UO + ln(2(1 - UO)) . (32)

This bound is .621 when UO = 1/3 and decreases as UO
increases to 1/2 to its smallest value, .5. Indeed, the worst
case task set is given by the special situation in which TO =
2C0, To = . . . = T,, and C1 = . . . = C, = 0.

In case 1 , if UO < 0.2, the schedulable utilization is at
least 0.7157, and reaches 1.0 as UO decreases to 0. The 100%

schedulability occurs because the defining condition for Case
1 is T, 5 To + Co, and as UO decreases the periodic task
periods converge to a common value. In this case, the rate
monotonic algorithm can schedule loads up to 100%.

Case 2 Bounds: The second case to be considered is char-
acterized by TO + CO < TI < . . . < T, 5 2To -t CO, that is the
deadlines of the periodic tasks lie between the third occurrence
of the DS task and the start of its fourth occurrence. It should
be clear that the worst case task set will satisfy TO + 2C0 5 T I .
The proof of Lemma B.1 can be easily modified to show that
the worst case computation times for this case are given by

(33)
(34)

C; = T;+1 - Ti, 1 5 a 5 n - 1
C, = 2T1 - T, - 3co

The periodic utilization for this task set is given by

for R; = Ti+l/T; subject to I21 2 1 + 2U0, R1 .. . R, 5
2 + UO or R 2 . . . R,, 5 (2 + U o) / R l . Consequently,

This expression can be minimized using Lemma A.1. We
find the minimum value to be given by (38) found at the
bottom of the page. Letting n --+ 00 we find (38) reduces to
DSper,infty(UO, R1) = lilnn-+m DSper,n(Uo, 1x1):

for 1 + 2U0 5 R1 5 2 + Uo. (39)

This bound is minimized by selecting R1 as small as possible,
thus we set R1 = 1 + 2Uo. We find the least upper bound for
the periodic component for Case 2 to be given by

The total schedulable utilization is plotted in Fig. 10, and is
given by

DSper,m(Uo) UO + ln[(2 + U O) / (~ + ~ U O)] . (41)

The DS Case 2 bound is minimized when UO = =
0.186 which gives a schedulable utilization of 0.652, slightly
below the Liu and Layland bound of 0.693 and the polling
bound of 0.708 given by (12) for a Polling Server with capacity
0.186.

(n [(2 - 3 2) ' - 1 1 if (2 - 3 $) * 5 v

STROSNIDER ef al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 89

0.78

0.76

0.74

3 0.72

3 0.70

0.68

0.66

3
0

C
0 .-
.- - .-
- m
c.’

0.0 0.2 0.4

UO Utilization
Fig. IO. Case 2 bound. Solid: polling; dotted: DS; dashed: L&L.

Case 3 Bounds: The final case we consider is when the
periodic tasks have periods which are both smaller and larger
than TO + CO, the time at which the DS task runs for the third
time. Specifically, we assume there are periodic tasks which
satisfy TO 5 TI < . . . < Tk 5 To + C0 < To + 2C0 5
Tk+l < . . . < T, < 2T0 + CO. The goal is to find the task
set with minimum utilization that fully utilizes the processor
during [0, Tn] given (GO , TO). Once again, a small modification
of Lemma B.l gives a proof that the C, for the tasks of the
worst case task set are given by

The total periodic utilization is given by

(1 + Uo)/R1. We seek to minimize

The minimizing values of R, are given by S1/ (k- l) l 2 < - - i <
IC. Thus our objective becomes the minimization of

n

i = k + 2

Lemma A.l allows us to minimize over Rk+2, . . . , R,. Equa-
tion (49) reduces to

subject to 1 5 S 5 (1 + Uo)/Rl,Rk+l 2 (1 + 2i70)lRlS.
Minimization over Rk+l reduces (50) to

1 + 2uo
R1 S

+ - -n . (51)
, { ---:} l’(n-k+l)

At this point, it is convenient to allow n to be large and
produce the least upper bound as a function of R1 and S
rather than minimizing over the discrete variable IC. Taking
limits, we find

subject to 1 5 S I (1 + Uo)/R1,1 5 R1 5 1 + Uo.
This is minimized by taking S as large as possible, that is
S = (1 + Uo)/ R1. This gives an expression for the least upper
bound as a function of UO and R1

Thus

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I , JANUARY 1995

0.75
s
t
0
.L +

0.70 .- e .-
5

r 1

.;...., , I ,
-
+-. cd

0.65

0 .o 0.2 0.4

UO Utilization
Fig. 1 1 . Case 3 bound. Solid: polling; dotted: DS; dashed: L&L.

The minimizing choice of R1 is given by R:! = 1. This results
in a least upper bound for the periodic component given by

The total schedulable utilization in the worst case is given by

This bound is plotted in Fig. 11 along with the generalized
Liu and Layland bound and the PS bound. It is a decreasing
function of Uo for Uo E [0,1/2]. If UO = 0, the bound is
In 2 = 0.693, the Liu and Layland bound. If UO = 1/2, the
bound is 112 + ln(9/8) = 0.618.

We complete the analysis by computing the worst case
utilization for the situation in which T, = 2(Co+To). Because
Tn/T1 < 2, we assume TO < CO + TO < TI < . . . < T,-1 <
T, = 2(Co +To).

It is obvious that we can reduce consideration to the case
To < 2C0 + To 5 Ti < . . . < Tn-l < Go + 2To <
2(Co + TO) = T,. For this case, the minimum utilization is
achieved when

The resulting utilization is given by

where R, = TJTi-1 and T,, = ~ (C O + TO). Standard
minimization arguments lead to

which is minimized by setting R1 = 2U0 + 1. Thus, the
minimum utilization for this case is

or as n -+ o(:

Direct comparison with the results for the three cases con-
sidered before show these bounds to be identical to the Case
2 bounds (see Eq. 40) and uniformly larger than those for
Case 3 (see Eq. 57). Consequently, Tn = 2Go + 27’0 cannot
correspond to the worst case. This shows that Tn/To < 2+ Uo
is a necessary condition for a worst case task set.

ACKNOWLEDGMENT

The authors wish to thank the referees for a very careful
reading of an earlier version of this paper which lead to
a substantial improvement in the paper. They also thank
Brinkley Sprunt for carrying out the extensive simulation study
presented in this paper, and C. J. Paul for his help in the
production of this paper.

REFERENCES

J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proc. IIth IEEE Real-Time Syst. Symp., 1990,

C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” JACM, vol. 20, no. 1, pp.
46-61, 1973.
J. Liu, C. L. Liu, and L. Liestman, “Scheduling with slack time,” Acta
Infonnatica, vol. 17, pp. 31-41, 1982.
J. Y. Leung and M. L. Merrill, “A note on preemptive scheduling of
periodic, real-time tasks,” Inform. Processing Lett., vol. 11, no. 3, pp.
115-118, Nov. 1980.
E. L. Lawler and C. U. Martel, “Scheduling periodically occurring tasks
on multiprocessors,” Inform. Processing La., vol. 12, no. I , pp. 9-12.
Feb. 1981.
J. P. Lehoczky. L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in froc.
10th IEEE Real-Time Syst. Symp., 1989, pp. 166-171.

pp. 201-209.

STROSNIDER et al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 91

(71 J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda, “Fixed priority
scheduling theory for hard real-time systems,’’ in Foundations of Real-
Time Computing: Scheduling and Resource Management, A.M. van
Tilborg and G. M. Koob, Eds. New York: Kluwer Academic, 1991,

[SI A. K. Mok, “Fundamental Design problems of distributed systems for
the hard real-time environment,” Ph.D. thesis, M.I.T., 1983.

191 L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical
problems in prioritized preemptive scheduling,”in Pruc. 7th IEEE Real-
Time Syst. Symp., 1986, pp. 181-191.

[I O] J . K. Strosnider and T. Marchok, “Responsive, deterministic ieee 802.5
token ring scheduling,” Real-Time Sysr. J . , pp. 133-158, Sept. 1989.

[I I] B. Sprunt, “Aperiodic task scheduling for real-time systems,” Ph.D.
thesis, Carnegie Mellon Univ., Aug. 1990.

[121 J. K. Stronsnider, “Highly responsive real-time token rings,” Ph.D.
thesis, Camegie Mellon Univ., Aug. 1988.

(I31 --, “Enhanced responsiveness protocol for real-time token rings,”
Tech. Rep. CMU-90-1, Carnegie Mellon Univ., Jan. 1990.

1141 M. Joseph and P. Pandya, “Finding response times in a real-time
system,’’ Compur. J . , vol. 29, no. 5 , pp. 390-394, 1986.

pp. 1-30.

Jay K. Strosnider (M’88) received the B S degree
in electncal engineenng and biotechnology in 1977,
and the M S degree in electncal engineenng in
1978, and the Ph D degree in computer engineer-
ing in 1988; all from Camegie Mellon University,
Pittsburgh, PA

He is an Associate Professor In the Electrical
and Computer Engineering Department at Camegie
Mellon University He worked for IBM developing
distributed real-time systems for submarines for
1978 to 1985 when he started his Ph D studies He

joined the CMU faculty as an As5istant Professor in 1988, and was promoted
to Associate Professor in 1993 His current research focus is upon integrating
wide ranging technologies within a scheduling theoretic framework Within
the application domains of real-time/multimedia \ystems, his research interests
include operating sy4tem5, networks, buseq, di\ks, window manager5 fault-
tolerance and A1

John P. Lehoczky (M’88) received the B A degree
in mathematm from Oberlin College, Oberlin, OH,
in 1965, and the M S. and Ph.D degrees in Statistics
from Stanford University, Stantord, CA, in 1967 and
1969, respectively

He was an Assistant Professor of Statistics at
Camegie Mellon University, Pittsburgh, PA, from
1969 to 1973, Associate Protesor from 1973 to
1981, and Profesor from 1981 to the present He
has served as Head of the Depatment of Statistics
since 1984 His research inteiest5 involve applied

probability theory with emphasis on models in the ared of computer and
communication systems In addition, he is the senior member of the Advanced
Real-Time Technology (ART) Project in the Carnegie Mellon University
School of Computer Science and is doing research in distnbuted real-time
systems, real-time scheduling and fault tolerance

Dr Lehoczky is a member of Phi Beta Kappa, a Fellow of the Institute
of Mathematical Stati\tics and the Amencan Statistical Association and I$

an elected member of the International Statistical Institute He is a member
of the ACM, Operations Research Society of America, and The Institute of
Management Science. He served a? area editor of @i(Management Science)
from 1981 to 1986 and IF Associate Editor of @%(Real-Time Sy5tems)

also served in NASA’s

Lui Sha (S ’ 7 ~ M ’ S ~ S ’ X I - M ’ 8 2 - S M ’ 9 1) is a se-
nior member of the technical staff of the Software
Engineering Institute. He leads the development
and transition of distrihutcd real-time fault-tolerant
computing technology at the SEI.

He is an Associate Editor of the international jour-
nal, Red-Time Svstems and an Area Editor of IEEE
Computer. He has published over 30 articles on
real-time computing and served as Chairs and Vice
Chairs on several national and international confer-
ences, workshops, and standard working groups. He

Space Station Advisory Comniittec.

