
IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. I ,  JANUARY 1995 

The Deferrable Server Algorithm for 
Enhanced Aperiodic Responsiveness 

in Hard Real-Time Environments 
Jay K. Strosnider, Member, IEEE, John P .  Lehoczky, Member, IEEE, and Lui Sha, Senior Member, IEEE 

Abstract-Most existing scheduling algorithms for hard real- 
time systems apply either to periodic tasks or aperiodic tasks but 
not to both. In practice, real-time systems require an integrated, 
consistent approach to scheduling that is able to simultaneously 
meet the timing requirements of hard deadline periodic tasks, 
hard deadline aperiodic (alert-class) tasks, and soft deadline 
aperiodic tasks. This paper introduces the Deferrable Server (DS) 
algorithm which will be shown to provide improved aperiodic 
response time performance over traditional background and 
polling approaches. Taking advantage of the fact that, typically, 
there is no benefit in early completion of the periodic tasks, the 
Deferrable Server (DS) algorithm assigns higher priority to the 
aperiodic tasks up until the point where the periodic tasks would 
start to miss their deadlines. Guaranteed alert-class aperiodic 
service and greatly reduced response times for soft deadline 
aperiodic tasks are important features of the DS algorithm, 
and both are obtained with the hard deadlines of the periodic 
tasks still being guaranteed. The results of a simulation study 
performed to evaluate the response time performance of the new 
algorithm against traditional background and polling approaches 
are presented. In all cases, the response times of aperiodic tasks 
are significantly reduced (often by an order of magnitude) while 
still maintaining guaranteed periodic task deadlines. 

Zndex Terms- Aperiodics, hard deadlines, deferrable server, 
periodics, real-time, response times, schedulability. 

I. INTRODUCTION 

OST existing scheduling algorithms for hard real-time M systems apply either to periodic tasks or aperiodic tasks 
but not both. In practice, however, most real-time systems 
require an integrated, consistent approach suitable for sched- 
uling hard deadline periodic tasks along with both hard and 
soft deadline aperiodic tasks. The periodic tasks typically arise 
from sensor data or control loops, while the aperiodic tasks 
generally arise from operator actions or aperiodic events. Most 
aperiodic tasks have average response time requirements (soft 
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deadlines). However, some aperiodic tasks, such as alerts, 
may require guaranteed response times. We define alerts as 
aperiodic tasks with very high semantic importance requiring 
guaranteed response time performance. The problem is to 
jointly schedule the periodic and aperiodic tasks so that 
the individual timing requirements for all tasks are met. In 
particular, the hard deadlines of periodic tasks and aperiodic 
alerts must be met, and the average response times for the 
other aperiodic tasks should be minimized. 

One commonly used approach is to treat the aperiodic 
tasks as background tasks when their response times are not 
critical. A second commonly used approach when timing 
requirements are more stringent is to use polling or time 
division multiplexing (TDM) schemes. This paper presents 
a new scheduling algorithm which is designed to offer fast 
response time performance for aperiodic tasks while still 
guaranteeing the hard deadlines of periodic tasks at a high 
level of periodic tasks utilization. The new algorithm, called 
the Deferrable Server (DS) algorithm, is able to substantially 
reduce the response time of aperiodic tasks by delaying the 
completion time of periodic tasks while still ensuring that 
their deadlines are met. The DS algorithm is built upon 
the rate monotonic scheduling algorithm 121 which features 
an attractive combination of high performance, predictable 
behavior and ease of implementation. 

Under the assumption of preemptive scheduling and task 
deadlines equal to task periods, Liu and Layland (21 proved 
that the rate monotonic algorithm is the optimal fixed priority 
scheduling algorithm. Here, optimality means that if a fixed 
priority scheduling algorithm can meet all deadlines of any pe- 
riodic task set, then so can the rate monotonic algorithm. Fixed 
priority scheduling algorithms cannot always achieve 100% 
processor utilization and still meet all task deadlines. Liu and 
Layland derived a least upper bound on processor utilization, 
given by n('2l/" - 1) for a task set with 71. periodic tasks. 
Any task set with total processor utilization at or below this 
bound could be scheduled by the rate monotonic algorithm. 
Joseph and Pandya [ 141 and Lehoczky, Sha, and Ding [6] later 
developed a necessary and sufficient (exact) schedulability 
tests that can be used to determine the schedulability of 
any given periodic task set. Recent work by Lehoczky [ l ]  
expanded the exact scheduling criterion to allow for general 
task deadlines. In addition, the rate monotonic algorithm 
has been greatly generalized to incorporate effects such as 
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task synchronization and transient overload. A comprehensive 11. DEFERRABLE SERVER DS ALGORITHM DESCRIPTION 
summary can be found in Lehoczky, Sha, Strosnider and 
Tokuda [7]. 

Other related scheduling work includes work by Liu, Liu 
and Liestman /3] who developed slack time bounds for pe- 
riodic tasks scheduled using the rate monotonic algorithm. 
Leung and Merrill [4], and Lawler [ 5 ]  considered deadline 
scheduling on multiple processors. Mok [8] showed that 
the least slack-time algorithm is an optimal algorithm for 
scheduling preemptable periodic tasks on a single processor, 
and also proved that the least slack-time algorithm dominates 
the earliest deadline scheduling algorithm on multiprocessor 
scheduling. Sha [9] showed that the dynamic algorithms 
are unstable under transient overload, meaning that under 
certain circumstances the deadlines of tasks can be missed in 
an unpredict5ble manner. In contrast, the transient overload 
problem can be easily solved in the context of the rate 
monotonic scheduling algorithm [91. Leung 141 proved that 
when the start time and the deadline for a task do not coincide 
with the period boundaries of a periodic task, that it is an 
NP-hard problem to decide if such a periodic task set can be 
scheduled by the earliest deadline algorithm [4]. Mok [SI found 
the same difficulty when tasks use semaphores for mutual 
exclusion. 

This paper addresses a new aspect of hard real-time sched- 
uling, namely the joint scheduling of hard deadline periodic 
tasks and aperiodic tasks. Specifically, the approach taken is 
the construction of a special periodic server task for processing 
aperiodic tasks. If the server task’s capacity is available only at 
periodic instants, then it is the same as a polling task (hereafter 
called a Polling Server). By contrast, the Deferrable Server or 
DS capacity is available for processing aperiodic tasks arriving 
at any time in its period, a modification which leads to better 
aperiodic task response times. The inclusion of a server task, 
whether a Polling Server or a Deferrable Server task calls for 
a new analysis for two distinct reasons. First, the utilization of 
the Polling and DS Server tasks will be fixed, consequently, the 
Liu and Layland least upper bound can be increased by taking 
this utilization explicitly into account. Second, the DS task 
violates one of the Liu and Layland assumptions, namely that 
the task is ready at the start of the task period. Consequently, 
a modification of Liu and Layland’s analysis must be carried 
out. These new analyses are important contributions of this 
paper. 

This paper is organized as follows. Section I1 sets the con- 
text for the aperiodic scheduling problem and introduces the 
Deferrable Server algorithm. Section I11 extends the Lehoczky, 
Sha and Ding exact case schedulability analysis [6] to include 
a Deferrable Server task as the highest priority task. Section 
IV first develops least upper bounds for the two tasks case 
for both the Polling Server and the Deferrable Server, and 
then summarizes the least upper bounds for the general case. 
Appendixes A and B provide proofs for the Polling Server 
and Deferrable Server least upper bounds respectively. Section 
IV-C provides guidelines for designing Deferrable Servers. 
Section V summarizes the results of simulation studies run 
to evaluate the response time performance of the algorithms. 
Section VI provides a summary and conclusions. 

The DS algorithm extends the rate monotonic scheduling 
algorithm to provide abstractions to support the scheduling of 
aperiodic tasks requiring quick response times. The rate mono- 
tonic algorithms for scheduling periodic tasks was formalized 
by Liu and Layland [2] under the following assumptions: 

A.l) All periodic tasks, 7, have periods, T ,  and constant, 
known execution times, C. Further, tasks are ready 
for execution at the beginning of each period, 

A.2) Task deadlines, D, are at the end of the task periods, 
that is D = T.  

A.3) Tasks are independent, do not synchronize or block 
each other and do not suspend themselves. 

A.4) All overhead for scheduling, context swapping, etc., 
is assumed to be zero. 

The rate monotonic algorithm assigns priorities in inverse 
relation to task periods, that is the shorter the task’s period, 
the higher the task’s priority with ties broken arbitrarily. 
Throughout the following analysis, we first analyze the Polling 
Server PS and then extend the analysis to address the DS 
case. 

PS Algorithm Description: A Polling Server is a periodic 
task with period 7’ps and an execution time Cps. The PS is 
used to provide relatively high priority service to aperiodic task 
arrivals. It is ready to run at the start of its period and services 
pending or arriving aperiodic tasks over the interval from the 
start of its period until Cps time units later. The PS task is 
subject to preemption by higher priority tasks, until either it 
exhausts its execution time or there is no aperiodic work left 
to be executed. In the latter case, it loses any of the unused 
execution time and is unavailable to service aperiodic tasks 
until the start of its next period. The PS task is scheduled as if 
it were a periodic task with period Tps. Aperiodic tasks that 
arrive or remain when the PS is unavailable can be serviced 
at background priority. 

DS Algorithm Description: A Deferrable Server (DS) is a 
periodic task with period TDS and capacity CDS. The DS 
is used to provide high priority service to aperiodic tasks. 
It is ready at the start of its period and services aperiodic 
task arrivals, subject to preemption by higher priority tasks, 
until it exhausts its execution time, CDS, or the end of its 
period is reached. Unlike the PS which loses any unused 
execution time when there is no aperiodic work remaining, the 
DS execution time, CD,, is available for servicing aperiodic 
arrivals throughout its entire period. It loses any unused 
execution time at the end of its period when its full capacity 
CDS is restored. The DS task is scheduled as if it were a 
periodic task with period TDS. Aperiodic tasks that arrive 
when the DS execution time, CDS, has been exhausted can 
be serviced at background priority. 

In general, the DS task is assigned a priority according to 
the rate monotonic algorithm based on its period, TDS, relative 
to the other periodic tasks. While the DS task can execute at 
any priority level, assigning the DS task the highest priority 
(by giving it a period no longer than the shortest periodic 
task period) allows one to guarantee that the deadlines of 
aperiodic alerts are met as well as enhancing the respon- 
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siveness of the soft deadline aperiodic tasks. At intermediate 
priority levels, the DS is less capable of providing responsive 
aperiodic service. Moreover, DS capacity can be lost because 
of higher priority preemptions even when aperiodics are ready 
for processing. For these reasons, we only consider the DS at 
the highest priority level. 

The DS task is different from the other periodic tasks. 
Each of the other tasks correspond to specific periodic tasks 
which are assumed to be ready to run at the start of their 
respective periods. The DS task is demand driven and can run 
in any part of its period in response to aperiodic arrivals. This 
characteristic, along with the fact that the DS task typically 
runs at the highest priority, provides highly responsive service 
for aperiodic tasks in hard real-time environments. On the 
other hand, the ability of the DS task to defer its execution 
time until later in its period when it may be needed violates 
assumption A 1 .  The schedulability analysis developed by Liu 
and Layland (21 no longer applies, and a new analysis must 
be developed. 

111. NECESSARY AND SUFFICIENT 
SCHEDULABILITY CONDITIONS 

We next present an analysis leading to a determination of the 
schedulability of a DS task, TO, executing at the highest priority 
together with m additional periodic tasks, T I ,  . . . , rm,, with 
priority assignments given by the rate monotonic algorithm. 
Each of the m + 1 tasks is characterized/ by a period, Ti, an 
execution time, C,, and a phasing relative to 0, It, satisfying 
0 5 Ii < Ti. We assume that TO 5 TI 5 T2 5 . . . 5 Tm, and 
assign priorities consistent with the rate monotonic scheduling 
algorithm. The m ordinary periodic tasks have deadlines equal 
to their period. The kth execution request of r;, 1 5 i 5 rn is 
ready at 1, + (k - 1)T;, and executes for C; units of time by 
its deadline at 1, + IC?;, k 2 1. The DS task, r0 provides Co 
units of available execution time starting at 10 + (k - 1)To. 
This execution time is available for use throughout the interval 
[IO + ( IC - l)?‘~, 10 + kTo), and any unused capacity is lost at 
10 + kT,. We will discuss the choices of C,, and TO to achieve 
good aperiodic response and minimize the wasted capacity in 
Section IV-C. We first focus on determining criteria that ensure 
that ail deadlines of the periodic tasks are guaranteed. 

In this section, we derive necessary and sufficient conditions 
which will ensure that all deadlines of the periodic., tasks 
are always met for any task phasing. The derivation of the 
necessary and sufficient schedulability conditions relies upon 
the following three results from Liu and Layland [2], and 
Lehoczky, Sha and Ding 161: 

Result 1: A task rj has its longest response time when it 
arrives at a critical instant. A critical instant occurs at t = 0 
when 1; = 0, 1 5 a 5 m. 
Result 2: All task deadlines will be met using the rate 
monotonic scheduling algorithm if the first request for each 
task meets its deadline under critical instant phasing, I ,  = 0, 
1 5 i _< vi. 
Result 3:  All periodic task deadlines are guaranteed by the 
rate monotonic algorithm under all task phasings if and only 

if 

The third result, which is the necessary and sufficient 
schedulability condition as stated in [6], relied on the earlier 
two results from Liu and Layland, and will be used to 
determine the schedulability of task sets which include a PS. In 
this paper we will generalize the above three results to permit 
inclusion of the DS task ro at the highest priority level. 

We define the response time of a task to be the time between 
its arrival and its completion. We want to find the conditions 
for the longest response time for any execution request of task 
ri, 1 5 i 5 m. To do this, we introduce the concept of a level-i 
busy period on the processing resource. 

Definition: A level-i busy period is a time interval [ s , t ]  
satisfying the following three conditions: 

1) All requests of priority i or higher made before s are 
completed by s, 

2) All requests of priority i or higher made before t are 
completed by t. 

3 )  For every ‘ 1 ~  E ( .s , t ) ,  there exists at least one request 
of priority i or higher that arrived before 11, and is not 
completed by II. .  

To illustrate this concept, consider a task set consisting of 
two tasks: rl : C1 = 4, T1 = 6. II = 0 and r2 : C2 = 6, 
Tz = 14, 12 = 0 ,  with ri having priority i ,  i = 1,2.  During 
[O, 241 the level-1 busy periods are [O, 41, [IO, 141 and [20, 
241, while the level-2 busy periods are [0, I O ] ,  [ 10, 201 and 
[20, 241. Note that the processor is continuously busy with 
tasks of priority 2 or higher throughout [0, 241; however, the 
level-:! busy periods are separated by the time points 10 and 
20 at which all outstanding requests have been completed. The 
above example shows that a level-i busy period may or may 
not contain a request for ri. If, as we have assumed, Di 5 Ti, 
all deadlines are met and a level-i busy period contains a 
request for T;, then that busy period will contain exactly one 
such request, and it will end when that request is completed. 
This follows because no task of priority higher than i can be 
active when r; completes, and at most one request for r; can 
be active if all deadlines are met. 

The concept of level-i busy period can be used to charac- 
terize the longest response time of any request for rl. 

Lemma 3.1: Suppose a periodic task set r ] , . . . , r ,  is 
schedulable using a fixed priority scheduling algorithm where 
r; is assigned priority %. A necessary condition for an execution 
request of 7i to have its longest response time is for the request 
of ri to initiate a level-i busy period. 

Proof: Tasks ri+l, . . . , r,, are of lower priority than ri 
and can be preempted by r;, thus they can be ignored. Consider 
any phasing of tasks 71, r2 ~ . . . , r?. Suppose that the execution 
request of T; does not initiate a level-i busy period. This means 
that 7;’s request must occur after il level-i busy period started. 
Let the start of the level-i busy period be s < t,;, where t L  
denotes the time of ri’s request. During [s ,  t i] ,  the processor 
is continuously busy with work of priority higher than i .  For 
the given phasing, T,  will complete at some time t > t , ,  giving 
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a response time of t - t,. Thus there are exactly C, units of 
computation available to r, in [t,, t ] ,  and none in [s, t z ] .  If r, 
had been initiated at time s, then it would also have completed 

or equivalently 

k 

at to time it in 1s. t ,  since t,]. This there would is no increase level-i computation the response time time available to s - t. T o l t l ~ k  min { 5 (CO (1+ [ 21) +z c, I;]) } I 1. 

( 3 )  
For the entire task set to be schedulable, ( 3 )  must hold for 

each IC, 1 5 IC 5 771. This leads to the necessary and sufficient 
schedulability condition given by 

This shows that the response time of task 7% is maximized only 
if its request initiates a level-i busy period. 

We next find the worst case phasing of the tasks, that is the 
phasing that maximizes the response time of task i. 

Theorem 3.2: The task set phasing which causes the longest 
response time for any periodic task occurs when all task 
periods of equal or higher priority are requested simultane- 
ously, and the highest priority Deferrable Server task demands 
Co units at this instant and is reinitiated Co units later. To 
check whether a task set is schedulable using a fixed priority 
algorithm with the Deferrable Server task having the highest 
priority, one need only check whether the first execution 
request of each task meets its deadline under this worst case 
phasing. 

Prosf: Using lemma 3.1, we may assume that 7 % ' ~  request 
initiates a level-i busy period, so at the time of its request, 
which we refer to as 0, there is no accumulated work of higher 
priority. Hence, 7, 's  period starts at 0. All other periods of 
tasks with priority higher than z start at 13, 1 5 j < z with 
IJ 2 0. The worst case IJ occurs when the processor must 
devote the largest amount of time to r3 during [O, t ] ,  where t 
is the completion time of T ~ .  Given 13, the cumulative demand 
for the processor made by any non-DS periodic task T~ in 
[ O , t ]  is given by 

which is maximized for all t 2 0 by setting I3 = 0. The special 
case of the Deferrable Server task ro is somewhat different. It 
can request Co units anywhere in any To time units. The largest 
demand for processor time is attained by setting Io = Co and 
having execution requests in [O. Co]. [Co. 2Co], [Co+T'. 2C0+ 
To] etc. Since the worst case phasing results in the longest 
response time for any task, if the first execution request 
meets its deadline under the worst case phasing, so will all 

We can now generalize (1) to provide a necessary and 
sufficient schedulability test with a high priority DS task 
included. The analysis closely follows that presented in [6]. 
A task Tk, 1 5 IC 5 n will meet all its deadlines under all 
phasings if its first execution request meets its deadline under 
the worst case phasing. The first execution request for rk will 
meet its deadline, if and only if there exists a time t before task 
r k ' s  deadline at which CI, units of work for rk and all work 
of priority higher than IC is completed. Under the worst case 
phasing, the total demand for processor time at time f To is 
given by (70 + co 1-1 + E:=, C - 1 ,where the first two 
terms correspond to the maximum possible execution time of 
ro. Thu\ Tk will meet its deadline if 

subsequent execution requests. 0 

k +cc; ;=1 iB1) - / t  } 5 1. (4) 

The minimizations in ( l ) ,  (3), and (4) call for finding the 
minimum of an expression with respect to a continuous vari- 
able t. The ceiling functions are step functions, consequently 
the terms in the expression are piecewise continuous and 
decreasing functions. This means that the formulas need to be 
evaluated only at points where the expression is discontinuous, 
that is the times t which are multiples of T, for all 1 5 i 5 k. 
One fairly efficient method to determine schedulability of a 
task set is to compute the sequence of time points {Se, ! = 
0 , 1 , .  . .} with 

If there exists an e L 1 such that St =  SE+^ 5 Tk, then 
'Tk is schedulable. If there exists .!! 2 1 such that Se > T k ,  
then Tk is not schedulable. This check must be carried out for 
k = 1 , 2 , . . ' , n .  

Iv. LEAST UPPER BOUNDS ON SCHEDULABILITY 

In this section, we develop least upper bounds on task set 
schedulability generalizing the results of Liu and Layland [ 2 ]  
to the case of task sets that contain a high priority server 
task, a PS task or a DS task. The least upper bounds provide 
sufficient conditions for task set schedulability in the sense that 
if the task set utilization lies below the bound, all periodic task 
deadlines will be met. If, however, the utilization lies above 
the bound, then the necessary and sufficient schedulability tests 
given in (4) must be used to determine whether the task set 
is schedulable. 

Given that the PS and DS tasks behave differently from the 
hard deadline periodic tasks, it is useful to keep the server 
task (DS or PS) utilization Uo = Co/To distinct from the 
total periodic task utilization U,,,, = 111 + . . + U ,  where 
U, = C,/T,. Suppose that Uo is fixed. We wish to find a 
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least upper bound on Up,, denoted by PS,( UO) and DS, ( UO)  
respectively for any given utilization UO for the PS or DS 
task. Any periodic task set with utilization less than or equal 
to PS,(Uo) or DSn(Uo)  is schedulable in the presence of a 
high priority server task having utilization UO. The bound is a 
least upper bound in the sense that for every Up,, > PS,(Uo) 
or DS, ([io) there exists a nonschedulable task set having 
utilization Up,,. We will determine these least upper bounds 
for both high priority Polling Servers and Deferrable Servers. 

A. The Case of Two Periodic Tasks 

To illustrate the ideas, we begin with the special case of 
two periodic tasks. Consider the situation with no DS task 
and two hard deadline periodic tasks 70 and 71. The high 
priority periodic task could be a Polling Server. Note that the 
analysis for the PS is identical to the case of determining the 
new least upper bound given that the utilizationof the highest 
priority periodic task is fixed. The resulting bound must in all 
cases be equal to or greater than the Liu and Layland least 
upper bound. Assume that Co and To and TI are given. Let 
R1 = T1/?;, 1. We ask how large C1 can be and still have 
all task deadlines satisfied under all phasings of TO and 71. 

Assuming the worst case phasing, the maximum utilization 
for U1 = C,/T1 = C1/R1r) is given by 

if k I  R1 I k + Uo 

for IC = 1 , 2 , .  . .. For any given value of U,, the maximum 
value of U1 varies from a maximum of 1 - UO when R1 = 1 to 
a minimum of e where R1 = l+Uo. The least upper bound 
onU1isthereforegivenby(l--Uo)/(l+U"),O 5 L'O 5 1.The 
total schedulable utilization is minimized when Uo = fi - 1. 
For this value of Uo, the total schedulable utilization becomes 
2 ( &  - 1) = 0.828, the Liu and Layland bound for two 
tasks. However, when U,, is fixed, the least upper bound on 
schedulable utilization, PStot( UO),  is given by 

PSt,t(Uo) = (1 + Ui)/(1 + UO) .  0 5 Uo 5 1. (6) 

This two-task least upper bound is plotted in Fig. 1 as a 
function of the utilization of the high priority task Uo, along 
with the corresponding DS two-task least upper derived below. 

The same type of analysis can be carried out for a high 
priority DS task, 70, and one periodic task, 71. Again we 
assume C'o.To, and TI are specified, and we seek the largest 
value of C1 for which all deadlines of 71 are met for all task 
phasings. The largest value of C1 depends upon C0,To and 
R1 and is given by 

C1 = 
TI - 2Co if 15 R1 5 1 + U, 
 TO - CO) if k + UO 5 R1 5 k + ZUo, k L 1 
TI - ( k  + 2)Co if IC + 2U0 5 Rl 5 k + 1 + UO, IC 2 1. 

(7) 

0.8 4 

0.0 0.2 0.4 

UO Utilization 
Fig. 1 .  
dashed: L&L. 

Two-task least upper scheduling bounds. Solid: polling; dotted: DS; 

Converting (7) to the maximum schedulable utilization of 71, 

we find it to be 

P - 

The above formulas provide least upper schedulability 
bounds for one lower priority periodic task as a function 
of UO, the DS utilization, and R1 = Tl/TO . We can also 
find the value of Rl which minimizes U1. Minimizing (8) 
over R1 we find 

I%71(Uo) = 
min( 1 - 2U0, ( 1 - [io)/ ( 1 + ZUo)) = B1 (Uo) O <= Uo 5 0.5 

0.5 5 u, <= 1 . 

(9) 

The resulting least upper bound on total utilization for the 
two-task DS case is 

{o 

DStOt(U0) = 
rnin(1 - Uo, (1 + 2U,2)/(1 + ZUo)) if 

if 
0 5 Uo 5 0.5 
0.5 5 UO 5 1 ' 

(10) 

This least upper bound is plotted in Fig. 1 along with the 
corresponding PS least upper bound, and the Liu and Layland 
least upper bound. We only plotted the bound for the range 
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0 5 UO 5 0.5. Above this range, no periodic task q is 
schedulable, and the entire processor becomes devoted to 
aperiodic task processing. 

The decrease in total schedulable utilization that occurs 
when a DS task with utilization UO replaces an ordinary 
periodic task with utilization Uo for 0 5 UO 5 1/4 is given by 
l+Uo 1-tzc; - ~ l ~ ~ , ~ ~ ~ ~ b r o l .  This is an increasing function 
of UO. It is 0 when Uo = 0 and increases to .1 when UO = 1/4 .  
For U,, > 1/4 a different least upper bound applies to the DS 
case, and a substantial decrease in utilization occurs. As will 
be seen in Section 5, the decrease in schedulable utilization 
can often pay for itself in the improved aperiodic task response 
time performance provided by the DS task. 

1-lJo I - U -  

B. The General Case 

Polling Sewer Bounds: We now tum to the general case 
when there is an arbitrary number of periodic tasks. We first 
consider the case of no DS server task but n + 1 periodic tasks 
where the highest priority task, TO, has fixed utilization of [ i o .  
This highest priority task could be a PS task. We will later 
replace this task with a DS task. 

Although the development of the least upper bounds for 
the PS are general for a PS running at any priority, we limit 
our discussion to the case where the PS is the highest priority 
task which is the case that will later be compared to the DS 
which is the primary focus of this paper. We consider a task 
set T ~ ,  . . I ,  T~ where TO is the PS task with a utilization UO. 
We seek to find the least upper schedulability bound, PS, ( UO)  
such that if the task set has utilization no greater than PS,(Uo), 
then it is schedulable using the rate monotonic algorithm. 
However, for every utilization U > PS,,(Uo) there exists an 
unschedulable task set with a task having utilization (10 and 
the task set having total utilization U .  

The development of the least upper scheduling bounds for 
the general case for periodic task sets with a PS task is similar 
in form to the two-task case developed earlier but much more 
complicated. As such, we limit our in-line discussion to a 
summary of the PS bounds and provide the formal derivations 
in Appendix A. Appendix A proves that the least upper 
schedulability bound for total periodic task set utilization with 
a fixed P S  task utilization of 0-0 to be 

/ /  '3 \ I / ,  \ 

Equation ( I  1) has two terms, the first gives the utilization 
of the periodic tasks, while the second corresponds to the 
utilization of the Polling Server. Letting n -i m, one can 
find the limiting value for the least upper bound, 

/ n \  

Equation (12) is a generalization of the Liu and Layland 
bound of fn2 in which the highest priority task has a utilization 
fixed to be UO. A graph of this bound is given in Fig. 2 .  One 
can see that there is very little change until UO becomes very 
large. For example, when UO = 0.25,PSt,oc(Uo) = 0.720, 
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Polling server least upper scheduling bound. Solid polling; dashed: 

only slightly larger than Ln2 = 0.693, the usual Liu and 
Layland bound. 

Equation ( 1 1 )  shows that if one has a polling task with 
utilization UO, then all periodic task sets consisting of n 
standard periodic tasks (in addition to the polling task) with 
total utilization no greater than n( ( - 1) will be 
schedulable. We now wish to determine a similar expression 
when the polling task is replaced by a DS task at the highest 
priority level with utilization UO. 

Deferrable Sewer Bounds: We now tum to deriving least 
upper scheduling bounds for task sets which have a DS task 
as the highest priority task and n standard periodic tasks. In 
Section 3 we showed that the worst case phasing allows the 
DS task to capture the first 2Co units of execution time, and 
3Co time units during [0, Go + TO]. Consequently, a DS task 
with utilization UO can consume more processing time than 
an ordinary periodic task with utilization UO over the same 
interval. Consequently the least upper schedulability bound 
when a DS is included will be smaller than that derived in the 
previous section for a Polling Server. 

The formal development of the DS case is more complex 
than the PS case and is included as Appendix B. We only 
summarize the bounds in this section. 

The development of least upper bounds for the DS derived 
in Appendix B requires the analysis of three different cases 
depending upon whether: 1 )  TI and T, are both smaller than 
TO + Co, 2 )  TI and Tn are both larger than TO + 2C0, or 3) 
TI is less than TO + GO. but T,  is larger than 70 + 2C0. 

We summarize the least upper bound on total schedulable 
utilization for Case 1 as a function of R, = T1/To and 
u, = Co/T,, 0 5 u, 5 1/2. 
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If T, < TO + CO (which entails R1 5 1 + UO) then we have 
(13) found at the bottom of the page. 

The bounds corresponding to TO + 2Co 5 T,, for Cases 2 
and 3 may be summarized as (14) found at the bottom of the 
page. If we choose R1 to minimize the above expressions, we 
find the least upper bounds on total schedulable utilization for 
the case of a high priority DS task and an arbitrary number 
of periodic tasks to be given by 

Note that the least upper bound is a combination of Case 1 
and Case 3 with Case 3 providing the bound for 0 5 UO 5 $ 
and Case 1 providing the bound for 4 5 UO 5 i. The 
Case 2 bound is greater than Case 3 over the entire range of 
0 5 UO 5 $ and thus it does not contribute to the composite 
least upper scheduling bound given in (15). 

The least upper scheduling bound given by (15) is plotted 
in Fig. 3 where it is compared with the least upper scheduling 
bounds for the high priority PS task and the limiting Liu and 
Layland bound of In 2. The difference between the polling 
bound and the DS bound is 0 for Uo = 0. 0.049 for 
Uo = 0.1, 0.077 for UO = 0.2, 0.093 for UO = 0.25, 0.1073 
for UO = 0.3 and 0.118 for UO = 1/3. 

C. Designing a Deferrable Server 

In this section, we address the question of designing a 
Deferrable Server for a real-time system. This question has two 
distinct facets: 1) determining whether to use the DS approach 
at all and 2) selecting the period and capacity for the DS task. 
The goal of any aperiodic service algorithm is to create a high 
priority resource for use by aperiodic tasks which will make 
it appear to those aperiodic tasks as if they had exclusive 
use of the full processing resource. To achieve such ideal 
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behavior, the aperiodic tasks must be serviced immediately 
upon arrival, and their processing can only be delayed by the 
queuing effects of other aperiodic tasks, not by interference 
from the hard deadline periodic tasks. The DS task offers the 
promise of such transparent aperiodic service; however, only if 
two conditions are met: 1) the DS task must run at the highest 
priority level (or else it will be subject to interruptions from 
the periodic tasks) and 2) the capacity of the DS in each period 
must be sufficiently large to service a busy period of aperiodic 
tasks arriving during a single DS period. The first condition is 
simple to achieve. We need only select TO 5 TI to ensure that 
the DS task is accorded the highest rate monotonic priority. 



80 IEEE TRANSACTIONS ON COMPUTERS. VOL. 44, NO. I ,  JANUARY 1995 

Creating a large enough capacity for the DS task to service the 
aperiodic requests on demand is a more complicated issue, and 
whether or not it is possible will depend upon the particular 
task set in question. 

The second condition for transparent aperiodic server oper- 
ation leads one to maximize the DS task capacity subject to 
the periodic tasks remaining schedulable. Section V will show 
that the DS algorithm provides essentially ideal performance as 
long as the capacity of the DS task is sufficient to service aperi- 
odic arrivals. Thus, one should use the necessary and sufficient 
schedulability conditions developed in Section I11 to maximize 
the size of the DS which can then provide transparent service 
at higher aperiodic loading levels. However, computing the 
maximum sized DS task consistent with meeting periodic task 
deadline requirements is significantly more complex for the 
necessary and sufficient conditions than for the least upper 
bound. The additional complexity associated with analyzing 
the necessary and sufficient conditions for the DS on-line may 
be prohibitive in some highly dynamic systems. 

Generally, for every choice of DS period TO with TO 5 T I ,  
there is a maximum C0 given by the necessary and sufficient 
schedulability test. Clearly, once 2'0 has been selected, one 
would want to use the largest possible value for CO. Generally, 
as To increases, C0 increases as well and this usually results 
in a larger utilization for the DS task. However, as the DS task 
period increases relative to the periodic tasks, anomalies can 
occur where a shorter period DS task could have a larger U O ,  
even a larger Co than a DS task with a slightly longer period. 
We next show that large values of To are also desirable. 

To show that large values of 7;) are desirable, suppose 
we compare two possible DS tasks, DS1 and DS2, having 
equal utilizations but different periods, 7:11 <  TO^. There are 
two fundamental reasons why DSp is better than DS1. First, 
since the two tasks have equal utilizations, C01 < C02, the 
larger capacity DS task makes it possible to service more 
aperiodic tasks and/or longer aperiodic tasks without inter- 
ruption. Consequently, large values of DS capacity increase 
the probability of aperiodic arrivals being serviced with no 
periodic interference, thus minimizing their response time. 
Second, the longer DS task period results in less wasted high 
priority aperiodic service capacity. To see this, consider the 
following example. Suppose that Go1 = 1 and To1 = 10, 
while (702 = 2 and 7'02 = 20. DS2 provides 2 units of service 
capacity any time during [0, 201. Any unused capacity is lost 
at time 20. DS1 also provides 2 units of service capacity 
during [0, 201; however, I unit of capacity will be lost at time 
10 if it is not used during [0, lo]. Moreover, DS1 can only 
service tasks whose service requirement is no greater than 1 
to completion, whereas DS2 can service tasks whose service 
requirement is no greater than 2 to completion. Generally, 
the longer period DS task can retain high priority aperiodic 
service capacity over longer periods. This is the fundamental 
advantage that the DS task holds over the PS approach. This 
capability allows the DS task to better match its service to 
variations in aperiodic arrival pattem. Thus this advantage 
should be maximized. 

In summary, if the largest DS task utilization that can be 
attained when To = TI is as large as the maximum attainable 

DS task utilization for shorter periods, then one should select 
To = 7'1 and these maximum attainable utilizations should 
be determined using the exact schedulability equations. If, 
however, the attainable utilizations is significantly increased 
by choosing a smaller value of the DS task period, then 
the aperiodic performances that can be achieved with these 
two different choices must be directly compared. The smaller 
period DS task should be used only if its capacity is large 
enough to provide adequate continuous aperiodic service. This 
consideration is part of a more general issue of whether the 
DS should be used at all. We next turn to that question. 

Once the choice of DS task has been made, one must 
ask whether it is appropriate to use the DS approach com- 
pared with other possible methods of providing high priority 
aperiodic task service. We first note that application studies 
[ 121, [ 101 clearly demonstrate that large aperiodic response 
time improvements are possible through the use of a suitable 
DS task. However, it should be noted that in both [12] and 
[lo] the mean aperiodic service times were small relative 
to the DS task capacity, CO. For such cases, as long as 
the DS task is not overloaded, most aperiodic requests will 
be serviced at the highest priority level which results in 
large reductions in aperiodic response times. More generally, 
one crucial comparison that must be made is the expected 
aperiodic busy period length versus CO. If aperiodic arrivals 
are assumed to form a Poisson process and have average 
service requirement E(  S), then the mean busy period length, 
assuming aperiodics are not interrupted by periodics, is given 
by E ( B )  = E(S)/(l - p ) ,  where p is the traffic intensity of 
the aperiodic stream taken by itself. For the DS to be highly 
effective, one must have E ( R )  < C0. If this inequality does 
not hold, then a significant fraction of the aperiodic arrivals 
will be serviced partially or completely at the background 
priority level. This reduces the effectiveness of the DS task. 
A Polling Server would exhibit a similar lack of effectiveness 
under similar conditions; however, the Polling Server has a 
larger capacity than the DS task. For long aperiodic requests, 
the effect of redistributing the aperiodic service opportunities 
is averaged out and the aperiodic response times converge 
towards background. Therefore, the DS task is not appropriate 
for servicing long aperiodic requests such as file transfers. 

We now address the question of aperiodic response times. 
Given a high priority DS task with utilization UO, determining 
whether aperiodic response time requirements will be met is 
more difficult than designing a schedulable DS task. First, 
consider alert class, guaranteed service. Alert class guarantees 
are provided assuming a minimum interarrival time for alert 
class tasks. Dedicated processing capacity or bandwidth is then 
reserved to service each alert task essentially as if it were a 
periodic task with a period equal to the smaller of its minimum 
interarrival time and its deadline. The guaranteed, alert class 
service provided by the DS task is very expensive from a 
resource allocation standpoint since the minimum interamval 
time of alerts is generally much less than the average arrival 
time. Further, running the DS tasks at the highest priority 
within the rate monotonic framework requires that the DS task 
period to be equal to or less than the shortest period within 
the underlying periodic task set. 



STROSNIDER et al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 81 

Alert class guaranteed service and soft deadline aperiodic 
service can be provided concurrently by using priority discrim- 
ination within the DS task, that is by reserving the required 
DS capacity, C0,,lerts to be used exclusively by alert class 
tasks. Altematively, one could construct two DS tasks with 
the same period that run at the top two priority levels in the 
system. These two DS tasks would then divide the available 
DS capacity, CO. In either case, the highest priority must be 
used to service the alerts with the second highest priority used 
for soft deadline aperiodic service. 

Generalized, analytic closed form solutions for determining 
whether arbitrary mixes of aperiodic soft deadline tasks will 
meet their desired response time requirements currently do not 
exist [ l l ] .  However, for the special case of small aperiodic 
service times (aperiodic service times much less than the 
DS capacity CDS) and when the loading of the DS task by 
aperiodic arrivals is less than 70%, essentially all aperiodic 
arrivals are serviced at the highest priority, and an MIMI1 
queuing analysis in which the periodic load is ignored accu- 
rately predicts soft deadline response times as will be shown 
in Section V. For higher DS loadings, the DS capacity is 
sometimes eshausted which results in some aperiodic arrivals 
being serviced at background priority and a queue of aperiodic 
tasks when the DS capacity becomes available. The simple 
MIMI  1 queuing model which ignores the peiodic tasks breaks 
down at this point. Attempts to develop more sophisticated 
queuing models which accurately predict aperiodic response 
times for the highly loaded DS case have been unsuccessful 
1113. 

V. APPLICATION STUDIES SUMMARY 

In this section we summarize the results of simulation 
studies which compare the response time performance of the 
DS algorithms against traditional Background and Polling 
techniques. As an additional figure of merit in evaluating the 
response time performance of the algorithms, we have included 
a lower bound on aperiodic response times. This bound is 
derived by assuming there is no periodic load, so all aperiodic 
tasks are served at high priority. The mean aperiodic response 
time can be calculated for this bound using an MIMI1  
queuing analysis. The M / M / l  case with no periodic load was 
one of the cases used to validate the simulator. At the end of 
this section, we summarize results from other DS applications 
in processor scheduling and in Local Area Network Media 
Access (MAC) scheduling. 

In each experiment, we evaluate the Polling and the DS 
algorithms using two distinct utilizations; one derived using 
necessary and sufficient scheduling conditions given by (3) 
and (4), and the other (smaller capacity) server utilizations 
derived from the least upper bounds given by (15). Each of the 
following nine experiments use 10 randomly selected periodic 
task sets with the minimum periods restricted to be greater 
than 55 .  The maximum periods for the task sets ranged from 
210 to 2,310 units. The relative phasing of task periods within 
each task set was chosen at random. The nine experiments 
correspond to periodic task set loadings of 40%, 60% and 80% 
and aperiodic mean service times which are 1%, 2% and 5% of 
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Periodic load = 406, Aperiodic mean service time = l/p = 0.55. Fig. 4. 

the server’s period (55). The aperiodic task arrival times were 
modeled using a Poisson arrival process, and the aperiodic task 
service times were modeled using an exponential service time 
distribution. The set of nine experiments allows us to evaluate 
the sensitivity of the DS algorithm to both periodic loading 
and mean aperiodic service times. 

Fig. 4 summarizes the results of Experiment 1 .  In this and 
all other figures “exact” refers to a DS or PS determined 
using necessary and sufficient schedulability conditions while 
“bound” refers to a DS or PS determined by least upper 
bounds. For this experiment, the periodic load was held 
constant at 40%, while the aperiodic load was increased 
from 10% to 50% (resulting in a total load ranging from 
50% to 90%). Using the least upper bounds for the Polling 
Server and Deferrable Server resulted in server capacities 
of 14.75 and 12.62 units respectively during each 55 unit 
server period. The exact schedulability conditions resulted 
in server capacities that varied from 27.41 to 32.94 units 
for Polling, and 20.38 to 23.71 units for the Deferrable 
Server for the 10 randomly selected periodic task sets used 
in this experiment. In the following discussions, it is useful to 
consider the traffic intensities on the servers when evaluating 
their relative performance. We define the server traffic intensity 
as TI = UaP/Us where U,, is the aperiodic load and Us = 
C,/T, = Utilization of the server. When TI is less than 70% 
and E ( S )  < CO, then most aperiodic requests are serviced by 
the DS task without any interference from the periodic tasks. 
As TI increases beyond this level, an increasing fraction of 
the aperiodics will be serviced as background tasks which will 
substantially degrade aperiodic responsiveness. 

Both the Deferrable Servers provide nearly optimal aperi- 
odic response time performance up to a total of 60%. These 
response times are nearly optimal in the sense that they 
are very close to the performance that would be obtained 
in the absence of a periodic load component. Note that the 
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aperiodic tasks are serviced at the full processor speed, not 
at a degraded rate proportional to the server’s utilization. 
In this range, for small aperiodic task sizes, the aperiodic 
average response times can be accurately predicted by sim- 
ple M / M / l  queuing models that ignore the periodic load 
component. Over this region the DS algorithm enjoys more 
than a factor of 10 response time advantage over Background, 
and more than a factor of 7 response time advantage over 
Polling. 

As the total load increases over 60%, the servers’ per- 
formance diverge from the ideal with the smaller utiliza- 
tion “bound” servers degrading more quickly than the larger 
“exact” servers. At the 70% total load point, the traffic 
intensity on the “bound” Polling and DS servers are 112% 
and 130% respectively. Unlike conventional queuing systems 
where traffic intensitiks in excess of 100% result in an in- 
finite expected queue length, the Polling and DS servers 
assign Background priority to arrivals when their respective 
capacities are exhausted. These servers thus provide either 
highly responsive aperiodic service when there is sufficient 
capacity, or Background service when their capacities are 
exhausted. The DS “exact” server, with a traffic intensity of 
about 75% still enjoys performance nearly equivalent to the 
M / M /  1 performance with essentially all aperiodic arrivals 
being serviced at high priority. The higher capacity “exact” 
DS server provides more than a factor of three performance 
advantage over the “bound” DS server, and advantage factors 
of more than 7, 8 and 13 over Polling “exact”, Polling 
“bound”, and Background respectively at the 60% total load 
point. 

When the total loading is increased to 80% the DS “exact” 
performance has diverged slightly from the MIMI1 lower 
bound. At this point, the traffic intensity on the DS “exact” 
server is loo%, and a significant fraction of the aperiodic 
arrivals are assigned Background priority. Near the 80% total 
load point the DS “bound’ and PS “exact” performance 
measures intersect. At this loading, the traffic intensity on the 
DS “bound” is 174% which, on average, results in 42% of 
the aperiodic arrivals being serviced at Background priority. 
The traffic intensity of the PS “exact” is only 73%. At this 
point, the relative server size advantage of the Polling “exact” 
(30 units to 12.62 units) outweighs the Deferrable Server’s 
capability to defer aperiodic service until needed. The larger 
capacity DS “exact” still maintains a substantial performance 
advantage over the other servers with advantage factors of 
more than 4, 5, 6, and 9 over DS “bound”, PS “exact,” PS 
“bound,” and Background. 

At 90% total load, the DS “exact” is saturated with a 
traffic intensity of 125%, and its performance sharply degrades. 
The other servers similarly continue to degrade with the 
DS “bound” performance converging towards PS “bound.” 
The preceding experiment demonstrated the ability of the 
DS algorithm to convert excess periodic task slack time into 
highly responsive aperiodic service. For this case, the DS 
“exact” provided response time service nearly identical to the 
expected response times in the absence of periodic loading. 
In effect, the DS algorithm provides nearly optimal service 
up to the loading at which it becomes nearly saturated, at 
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which point its response time starts to fall off sharply as a 
significant portion of the aperiodic arrivals must be serviced 
at Background priority. 

For Experiment 2, illustrated in Fig. 5, we increased the 
periodic load component to 60%. The aperiodic load was then 
increased from 5% to 30% for a total loading range from 
65% to 90%. Using the least upper bounds for the Polling 
Server and Deferrable Server results in server capacities of 
5.37 and 3.61 units respectively during each 55 unit server 
period. The exact server capacities varied from 2 I .99 to 15.3 1 
units for Polling, and 19.92 to 11.16 units for the Deferrable 
Server across the 10 randomly selected periodic task sets 
used in this experiment. Again, the aperiodic response time 
in the absence of the periodic load component is plotted for 
comparison. Once again, we note that the larger capacity DS 
“exact” provides nearly optimal service across most of the 
range until it becomes saturated. 

At 65% total load (5% aperiodic load), the PS and DS 
“bound” servers’ p&formance are already diverging from their 
corresponding “exact” servers. This is because of the very 
small capacities for the “bound’ servers with their resultant 
traffic intensities of 101% and 138% respectively. As we 
increase the aperiodic load above 5% the “bound’ servers’ 
performance quickly degrades towards Background with a 
relatively low percentage of aperiodic arrivals being pro- 
vided high priority service. The bulk of these arrivals are 
scheduled at Background priority which results in their aver- 
age performance converging toward the average Background 
performance. In contrast, the “exact” servers have sufficient 
capacity to service the majority of aperiodic anivals at high 
priority thus creating a widening performance advantage over 
Background. 

The DS “exact” provides the best response time perfor- 
mance maintaining essentially the M / M /  1 ideal performance 
out to about 78% total loading. At 65% total loading the 
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performance advantage factors are more than 3, 16, 17, and 
39 respectively compared to DS “bound”, PS “exact,” PS 
“bound”, and Background respectively. The DS “bound” per- 
formance intersects the larger PS “exact” performance at about 
72% total load. As the aperiodic load is increased to 13% (78% 
total load), the DS “exact” performance advantage further 
widens to more than 15, 25, 29, and 40 over PS “exact”, DS 
“bound”, PS “bound”, and Background respectively. At a 13% 
aperiodic load the traffic intensities on the PS and DS “exact” 
servers average 53% and 64% respectively thus accounting 
for their ideal performance up to this loading level. The PS 
“bound” performance parallels the DS “exact” performance 
across the range with each degrading as the servers start to 
saturate in the mid 80% total loading range. At 90% total load 
the DS “exact” performance advantage factors are in excess 
of 3, 7, 8 and 9 for PS “exact” DS “bound,” PS “bound’ and 
Background respectively. 

For Experiment 3, illustrated in Fig. 6, we further increased 
the periodic load component to 80%. The aperiodic load was 
then increased from 2% to 10% for a total loading range from 
82% to 90%. At these high periodic utilization levels, it i s  
not possible to use the “bound’ servers, and it is necessary to 
use explicit task information to determine the “exact” servers 
for DS and Polling. The “exact” server capacities varied from 
10.54 to 1.82 units for Polling, and 10.73 to 1.39 units for the 
Deferrable Server across the 10 randomly selected periodic 
task sets used in this experiment. The DS “exact” provides the 
best performance across the range diverging relatively slowly 
from M / M / l  ideal performance as the DS server becomes 
saturated. The DS “exact” performance is from 2 to 16 times 
better than the PS “exact” performance, and 9 to 70 times 
better than Background performance. 

It is useful to jointly compare the results of the last set 
of three experiments at 40%, 60% and 80% periodic loading. 
Adjusting to the differing scales needed to accommodate the 
widening relative ranges, the DS and PS “exact” performances 
were nearly invariant to the increasing periodic load. In 
essence these “exact” servers were of sufficient capacity to 
service nearly all aperiodic arrivals at high priority. In contrast, 
the lower capacity “bound” servers’ performance degraded 
quickly with increasing periodic load. This indicates that there 
are significant performance advantages to using the largest 
possible server as determined by necessary and sufficient 
schedulability conditions. Whenever possible, one should use 
the larger “exact” servers. 

The above set of three experiments evaluated the relative 
performance of the DS algorithm for short service times and 
increasing periodic load. We also evaluated the algorithm 
for increasing aperiodic mean service time and found the 
DS performance to degrade with increasing aperiodic service 
times. Fig. 7 illustrates the results for the composite set of 
nine experiments. Each row reflects increasing periodic load 
components of 40%, 60% and 80%. Each column reflects 
increasing aperiodic mean service times with the mean ser- 
vice time doubling in each subsequent row. Experiments 1 
through 3 reflects the results for the relatively short aperiodic 
service times already discussed above. Experiments 1,  4, and 
7 summarize the results of increasing aperiodic mean service 
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time with the periodic load component at 40%. As we increase 
the mean service time, the servers’ response time performance 
degrade more quickly from the lower bound M/M/l perfor- 
mance. Note that the servers’ traffic intensities are constant 
at corresponding points among the three graphs. Thus the 
servers’ performance are sensitive not only to loading, but 
also to aperiodic job size. 

As we examine the graphs representing 80% periodic load, 
we note that with increasing aperiodic mean service times 
the performance of the “exact” servers move further away 
from M / h l / l  performance as the service time is increased. 
However, in all cases, DS “exact” provides the best perfor- 
mance over the broadest range with significant performance 
advantages in all cases. In contrast, DS “bound” performance 
(columns 1 and 2) starts out nearly optimal, but degrades 
toward Polling as the load is increased with the PS “exact” 
providing better performance at high loading. At this point 
the relative size advantage of the PS “exact’ outweighs the 
capability of the DS server to defer service until needed. For 
each of the experiments, the DS “exact” provided the best 
performance. In all cases the “exact” servers’ relative perfor- 
mance improved over Background as the periodic loading was 
increased. In effect, the servers have the ability to break up 
large periodic task busy periods while still meeting all periodic 
task deadlines. 

The above experiments demonstrate the DS algorithm’s 
ability to reduce aperiodic response times in hard real-time 
environments. In all cases the algorithm maintained guar- 
anteed periodic response times while minimizing aperiodic 
response times by converting excess periodic slack time into 
high priority aperiodic service. Earlier simulation studies for 
processor scheduling demonstrated that the DS algorithm 
could significantly reduce aperiodic response times while 
maintaining guaranteed periodic task deadlines. Response time 
improvements of 90% were demonstrated (12). 
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The above experiments demonstrated the capability of the 
DS algorithm to greatly reduce soft deadline aperiodic re- 
sponse times in hard deadline, real-time systems. The DS 
algorithm can also be used to provide guaranteed, highly 
responsive (alert class) aperiodic service. This latter capability 
was demonstrated in application studies in the Local Area 
Network (LAN) media access (MAC) scheduling for both 
IEEE 802.5 Token Rings (10) and SAE-9B High Speed Ring 
Bus (HSRB) ( I  3, 12). In both application studies, media access 
scheduling models supporting global, prioritized contention 
resolution were first developed. The DS algorithm was then 
applied. In both of the LAN studies the DS algorithm provided 
guaranteed alert class aperiodic deadlines and greatly enhanced 
aperiodic response times while still maintaining guaranteed 
periodic deadlines. The response time improvement for the soft 
deadline aperiodic tasks was nearly two orders of magnitude 
in both cases. 

VI. CONCLUSION 

This paper has presented the theoretical foundations for 
the Deferrable Server algorithm which provides a solution 
to the problem of jointly scheduling hard deadline periodic 
tasks and hard and soft deadline aperiodic tasks. To provide 
a fair comparison, both necessary and sufficient conditions 
and least upper bounds were developed for the Deferrable 
Server algorithm and the more conventional polling technique 
of scheduling aperiodic service in hard-time environments. 
Taking advantage of the fact that there is typically no ad- 
vantage for the system for periodic tasks completing early, the 
DS algorithm converts the excess periodic task slack time into 
highly responsive aperiodic class performance. The algorithm 
has been used to introduce highly responsive, guaranteed alert 
task aperiodic service while still maintaining periodic task 
guarantees as well as providing response time improvements 
of an order of magnitude for soft deadline aperiodic tasks. The 
algorithm has been shown to provide nearly optimal aperiodic 
response time performance for relatively short aperiodic mean 
service times up to very high server traffic intensities. As the 
mean service times were increased, the DS response time 
performance diverged more quickly from the optimal non- 
interfering case. Other application simulation studies in both 
processor and LAN media access scheduling have shown 
similar results and sensitivities. 

APPENDIX A 
POLLING SERVER LEAST UPPER BOUNDS 

Section IV developed least upper schedulability bounds for 
the case of two tasks where one of the tasks was a high priority 
Polling Server, PS, task. The schedulability bounds for the 
general case of n periodic tasks were then summarized in (4). 
The supporting proofs for the PS general case are provided 
in this appendix. 

The analysis essentially follows that of Liu and Layland. 
One considers full-utilization tasks sets in which any one of 
the tasks has a fixed utilization of U .  These are task sets which 
are schedulable, but if the computation requirement of any of 
the tasks were to be increased, a deadline would be missed. 

We seek the full-utilization task set with minimum utilization. 
The utilization of that task set will be PS,(U). We refer to 
such a task set as a worst case task set. 

Assume TO 5 TI 5 . . . 5 T,. We first show that we can 
restrict attention to task sets that satisfy T,/To < 2. Suppose 
instead T,/To 5 2 and one of the tasks has utilization fixed at 
U. Then if the utilization of neither TO nor T, has been fixed, a 
full-utilization task set with less utilization can be constructed 
by modifying TO and T, as follows: assume T, = ]ETo + r ,  k 2 
%,0 5 r < TO, and let T,* = kTo,CG = Co,T,* = T, 
and C i  = C, + ( k  - 1)Co. The new task set has less total 
utilization and is either full-utilization or a deadline is missed 
and the utilization of the other periodic tasks must be reduced 
to achieve schedulability. If TO has utilization ZTo, then one 
can modify TO by letting T,* = kT0, and C;l,. = kCo and 
apply the preceding argument if Tn/Tl 2 2. The result is 
a full-utilization task set with no greater utilization. If T, 

has utilization U ,  then one can define TT = LgJT, and 

C,* = C, , 0 5 J 5 ri- 1. The result is a task set satisfying 
Tn/Ti < 2 which is either full utilization or whose utilization 
must be further reduced so that deadlines are not missed. Thus 
we can restrict attention to the case Tn/To 5 2. 

The second step is to characterize the worst case task 
set assuming T,,/To < 2 with one task having a utilization 
li. Using the argument of Liu and Layland we find C, = 
T,+l- T,, 0 5 i 5 n - 1 and C, = 27b - T, to be the choice 
of C, resulting in the minimum utilization. The resulting total 
utilization is given by 

Defining & = Ti/Ti-l: 1 5 i 5 n, this expression becomes 

n 

- 
i=l 

n n 

i=l , = I  

Here, R, 2 1, nrZl R, < 2 and one of the tasks has utilization 
11. The latter condition implies R, = 1+U for some 1 5 z 5 n 
or 2 / n y = ,  R, = 1 + U .  

Some of the subsequent analysis is based on the following 
lemma: 

LemmaA.1: Let x > 0, y > 1 and H(R) = cy=, R, + ./nrZl R, - ( n +  l ) ,  where R = ( R I , . . . , ~ ) .  Let S, = 
{RIR, 2 1,n:=, R, i Y). Then 
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Proo$ Consider any RES, with R, < R3 for some 
i # j .  Define R* by letting R: = R; = (&R3)ll2 and 
R$ = Rk, k # i , j .  It follows that R*&, and H(R) - 

(R,"~ - ~ : / ' ) 2  > O. Consequently, the minimizing R must 
be of the form R = R( 1,1, . . . , 1). This reduces consideration 
to the function H ( R )  = nR + x/R" - (n + 1) subject to 
1 5 R 5 y"". Clearly 

H(R*) = R, + R3 - R: - R; = R, + R3 - 2(&R,)1/2 = 

Therefore the minimum of H ( R )  subject to R 5 T J ~ / ' ~  
occurs at R = min(z'/("+'),y'/"). Substituting R into 
H ( R )  gives Eq. 17. Equation (18) follows from the fact that 

0 
A straightforward application of Lemma A. 1 applied to (1 6) 

with either R, = 1+U for any particular 1 5 i 5 71 or a simple 
minimization argument 2/ n:=l R, = 1 + U yields the least 
upper bound on the total utilization where any one task has a 
fixed utilization U .  We replace U by UO for later comparisons 
with the DS algorithm and get 

limn-w n(z'/" - 1) = In .c for z > 0. 

PS,,,,.,(Uo) = .'( (&)I/, - 1) + uo. (20) 

Equation (20) has two terms, the first gives the utilization 
of the periodic tasks, while the second corresponds to the 
utilization of the Polling Server. Letting n -+ x3 one can 
find the limiting value for the least upper bound, 

Equation (21) is a generalization of the Liu and Layland 
bound of h 2  in which one of the tasks has utilization fixed to 
be Uo. A graph of this bound is given in Fig. 8. One can see 
that there is very little change until Uo becomes very large. For 
example, when Uo = 0.25, PSt,30(Uo) = 0.720, only slightly 
larger than en = 0.693, the usual Liu and Layland bound. 

Equation (20) shows that if one has a polling task at any pri- 
ority level with utilization UO, then all periodic task sets con- 
sisting of 71 standard periodic tasks (in addition to the polling 

task) with total utilization no greater than n ((A) l /n - 1) 

will be schedulable. We now wish to determine a similar 
expression when the polling task is replaced by a DS task 
at the highest priority level with utilization UO. 

APPENDIX B 
DEFERRABLE SERVER LEAST UPPER BOUNDS 

Section IV developed least upper schedulability bounds for 
the case of two tasks where one of the tasks was a high priority 
Deferrable Server, DS, task. The schedulability bounds for the 
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general case of 7~ periodic tasks were then summarized. The 
supporting proofs for the DS general case are provided in this 
appendix. 

We consider a task set with a high priority DS task, T ~ ,  

having utilization UO and n periodic tasks r1 , . . . . r, with 
To F 7'1 5 . . .  5 T,. The determination of a worst case 
task set is facilitated by examining restrictions to the period 
ratios. For example, Appendix A showed that Tn/To < 2 is 
a necessary condition for a worst case task set. When a DS 
task, TO is included at the highest priority, the worst case period 
ratios change. There are two necessary condition for a task set 
to be a worst case task set: Tn/Tl < 2 and Tn/7b < 2 + [JO.  
These conditions can be derived as follows. 

Suppose, 70. q ,  . . . . 7, is a task set that fully utilizes the 
processor, and suppose T,/Tl 2 2, that is T,, = kTl + r ,  
0 5 r < TI with k 2 2. Assuming the worst case phasing, we 
modify TI and rT1 to 7; and 7,' as follows. Let C; = GI, T;* = 
kT1, C: = C, + ( k  - 1)Cl and T: = T,. The modified 
task set fully utilizes the processor, but the utilization of the 
periodic task set is reduced by (k - l)C1(l/TL - l/kT1) > 0. 
Consequently T,/Tl < 2 is a necessary condition for the 
worst case task set. 

We next show that ",/To < (2 + Uo) is a necessary 
condition for a worst case task set. Suppose Co + kTo 5 
T, < 2Co + kTo for some k 2 1. In the worst case, the 
DS task, TO, would run during [Co + kTo,2C0 + kTo], thus 
T, could be increased to 2Co + k?b, the task set would 
still be full utilization and its total utilization would be 
reduced. Consequently, attention can be restricted to the case 
2Co + kTo 5 T, < Co + ( k  + l)T, for k 2 1. Suppose 
ZCo + k:To < T, < Co + ( k  + 1)Tg for some k 2 2. We can 



SJXOSNIDER er al.: THE DEFERRABLE SERVER ALGORITHM FOR ENHANCED APERIODIC RESPONSIVENESS 87 

modify the DS task to TA = T,/(2Uo + k )  and Cl, = U0T& 
Note that TA < TI because T,/T1 < 2, so the DS task 
retains the highest priority. The modified DS task runs the 
same number of times ( k  + 2)  during [O,Tn], but each is 
longer. Consequently, the periodic utilization must be reduced 
to maintain schedulability. Therefore, 2Co + kTo < T, < 
Co+(k+l)To cannot give the worst case if k 2 2. It remains to 
consider the case T, = 2Co + ICTo , IC 2 2. If k 2 3, we modify 
the DS task so that TA = To ziy+kfl , and Ch = UoCo. 
The utilization is preserved, TA < Tn/2 < TI so the DS task 
retains the highest priority. The modified DS task fills more 
of [O, T,] than the original, so the periodic utilization must be 
reduced to retain schedulability. This leaves only one case to 
be considered, T, = 2Co + 2To. Later in this section, we will 
give an explicit computation of the worst case utilization for 
this case and show that it is larger than that for the other cases. 
Once this is done, we will have shown Trh/T0 < 2 + UO is a 
necessary condition for worst case periodic task set utilization. 

We now turn to developing least upper bounds on the 
schedulable periodic task utilization as a function of UO, the 
utilization of the high priority DS task. We assume TO 5 TI 5 
' . . 5 T,, T, f TO < 2 and Tn/T0 < 2 + UO. The analysis is 
carried out by considering three distinct cases: 
Case 1 :To I TI 5 . . . 5 T, < TO + Co 
Case 2 :TO 5 To + CO 5 Tl I . . . 5 T, 5 2To + Co 
Case 3 :To 5 Tl 5 . . . Tk 5 To + Co 5 To + 2Co 

( O +  1 

5 Tk+1 I ' '  ' 5 Tn I 27'0 + GO 
for some k ,  1 5 k 5 n - 1. 

The goal is to find upper bounds for each of these three cases 
as a function of n, UO and R1 = Tl/To. These three bounds 
are themselves of independent interest. Minimization over the 
three bounds yields the least upper bound on utilization for 
the periodic tasks as a function of UO. 

Case 1 Bounds: We begin with the simplest case in which 
for the worst case phasing, the DS task occupies only the 
interval [O.2Co] before T,, the deadline of T,. Specifically, 
we assume To 5 TI . . .  5 T, I TO + Co, the task set 
fully utilizes the processor, and To and Co are fixed with 
Co/To = U o .  We seek values of (Cz. Tt), 1 I z 5 n satisfying 
the above restrictions for which E:=, C,/T, is minimized. 

The following lemma which is based on a similar lemma of 
Liu and Layland gives the minimizing values of C, , 1 5 7 5 n 
as a function of T, , 0 5 i I n. 

Lemma B. 1:  Suppose a task set satisfies TO 5 TI 5 . . . 5 
T, < Ti, + Co. Under the worst case phasing, C,/T, 
is minimized by C, = T,+1 - T,. 1 5 2 I n - 1 and 

Proof Suppose Cl = T2 - Tl - t 2 0 for some 
E > 0. Since the task set fully utilizes the processor, the 
time interval [TI + C1, T2] must be utilized by lower priority 
tasks. Suppose 7 2  utilizes the t units of computation. Consider 
the modified task set in which only T~ and TZ are modified 
by Cf = C1 + t / 2  and Cz = C2 - E .  The modified task 
still fully utilizes the processor but has utilization reduced by 
t(-1/2Tl +l/T2) > 0. Consequently, for minimum utilization 
we must have t = 0. Continuing in a similar fashion, no lower 
priority task can execute during [TI + C1,T2] and still have 

C, = 2(1i - CO) - T,. 

minimum utilization. Consequently, a necessary condition is 

Next, suppose C1 = Tz - TI + t for some F > 0. Consider 
the modified task set in which only 71 and 7 2  are modified 
by C; = Tz - T I ,  C,* = Cz + t. The modified task set 
fully utilizes the processor, but the utilization is reduced by 
c(l/Tl - 1/Tz) > 0. Consequently, a necessary condition is 
C1 5 T2 - Tl. It follows that Cz = TZ - Tl. By repeating 
this identical argument sequentially for Cz, . . . , C,, we find 
C, = T,+1 - T,. 1 5 i I n - 1. In order for the task set to 
fully utilize the processor, Cn = 2(T1 - Cc,) - TrL, and the 
lemma follows. 

From Lemma B.l, we know that the worst case periodic 
utilization corresponds to a task set with computation require- 
ments given by: 

C, = T,+1 - T,,2 5 i 5 n - I (22) 

Cn 2(T2 - C1) - T,. (23) 

C1 2 Tz - TI .  

The periodic utilization for these tasks is given by 

where Ri = Ti/Tip1, 1 I i I 7 ~ .  

sub jec t toRI . . .R ,  5 l + U o o r R z . - . R n  5 (1+Uo)/Ri.  
Using Lemma A. 1 ,  the bound for n periodic tasks as a function 
of R1 and Uo is given by 

Letting n -+ 30 we find 

DSper,,(Uo, R1) 

The above bounds can be further minimized by finding 
a minimizing value of R1 E [l. 1 + U o ] .  The bounds are 
minimized by setting R1 = 1 that is by allowing the DS 
period to be as large as possible while maintaining the highest 
priority. In this case, the asymptotic bounds on periodic task 
utilization become 

In ( l+  uO)  + 
ln(2(1- U O ) )  

o I UO I 
5 5 u, I 1/2 . 

(29) 

DSper,oo(UO) = 
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Adding U ,  gives the least upper bound for total schedulable 
utilization of 

(30) 

Fig. 9 plots the Case 1 bounds along with the bounds corre- 
sponding to a PS, and the generalized Liu and Layland case. 
If we restrict attention to 0 5 UO 5 1/3, then the worst case 
total utilization in Case 1 is 

This is a decreasing function of Uo. The total schedulable 
utilization for 1/3 5 UO 5 1 / 2  is given by 

DSt,t,,(Uo) = UO + ln(2(1 - UO)) .  (32) 

This bound is .621 when UO = 1/3 and decreases as UO 
increases to 1/2 to its smallest value, .5. Indeed, the worst 
case task set is given by the special situation in which TO = 
2C0, To = . . . = T,, and C1 = . . . = C, = 0. 

In case 1 ,  if UO < 0.2, the schedulable utilization is at 
least 0.7157, and reaches 1.0 as UO decreases to 0. The 100% 

schedulability occurs because the defining condition for Case 
1 is T, 5 To + Co, and as UO decreases the periodic task 
periods converge to a common value. In this case, the rate 
monotonic algorithm can schedule loads up to 100%. 

Case 2 Bounds: The second case to be considered is char- 
acterized by TO + CO < TI < . . . < T, 5 2To -t CO, that is the 
deadlines of the periodic tasks lie between the third occurrence 
of the DS task and the start of its fourth occurrence. It should 
be clear that the worst case task set will satisfy TO + 2C0 5 T I .  
The proof of Lemma B.1 can be easily modified to show that 
the worst case computation times for this case are given by 

(33) 
(34) 

C; = T;+1 - Ti, 1 5 a 5 n - 1 
C, = 2T1 - T, - 3co 

The periodic utilization for this task set is given by 

for R; = Ti+l/T; subject to I21 2 1 + 2U0, R1 .. . R, 5 
2 + UO or R 2 . .  . R,, 5 ( 2  + U o ) / R l .  Consequently, 

This expression can be minimized using Lemma A.1. We 
find the minimum value to be given by (38) found at the 
bottom of the page. Letting n --+ 00 we find (38) reduces to 
DSper,infty(UO, R1) = lilnn-+m DSper,n(Uo, 1x1): 

for 1 + 2U0 5 R1 5 2 + Uo. (39) 

This bound is minimized by selecting R1 as small as possible, 
thus we set R1 = 1 + 2Uo. We find the least upper bound for 
the periodic component for Case 2 to be given by 

The total schedulable utilization is plotted in Fig. 10, and is 
given by 

DSper,m(Uo) UO + ln[(2 + U O ) / ( ~ +  ~ U O ) ] .  (41) 

The DS Case 2 bound is minimized when UO = = 
0.186 which gives a schedulable utilization of 0.652, slightly 
below the Liu and Layland bound of 0.693 and the polling 
bound of 0.708 given by (12) for a Polling Server with capacity 
0.186. 

( n [ ( 2 - 3 2 ) ' - 1 1  if ( 2 - 3 $ ) * 5 v  
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Case 3 Bounds: The final case we consider is when the 
periodic tasks have periods which are both smaller and larger 
than TO + CO, the time at which the DS task runs for the third 
time. Specifically, we assume there are periodic tasks which 
satisfy TO 5 TI < . . .  < Tk 5 To + C0 < To + 2C0 5 
Tk+l < . . .  < T, < 2T0 + CO. The goal is to find the task 
set with minimum utilization that fully utilizes the processor 
during [0, Tn] given (GO , TO). Once again, a small modification 
of Lemma B.l gives a proof that the C, for the tasks of the 
worst case task set are given by 

The total periodic utilization is given by 

(1 + Uo)/R1. We seek to minimize 

The minimizing values of R, are given by S1/ (k- l ) l  2 < - -  i < 
IC. Thus our objective becomes the minimization of 

n 

i = k + 2  

Lemma A.l allows us to minimize over Rk+2, . . . , R,. Equa- 
tion (49) reduces to 

subject to 1 5 S 5 (1 + Uo)/Rl,Rk+l 2 (1 + 2i70)lRlS. 
Minimization over Rk+l reduces (50) to 

1 + 2uo 
R1 S 

+ - -n .  (51) 
, { ---:} l’(n-k+l) 

At this point, it is convenient to allow n to be large and 
produce the least upper bound as a function of R1 and S 
rather than minimizing over the discrete variable IC. Taking 
limits, we find 

subject to 1 5 S I ( 1  + Uo)/R1,1 5 R1 5 1 + Uo. 
This is minimized by taking S as large as possible, that is 
S = ( 1  + Uo)/ R1. This gives an expression for the least upper 
bound as a function of UO and R1 

Thus 
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The minimizing choice of R1 is given by R:! = 1. This results 
in a least upper bound for the periodic component given by 

The total schedulable utilization in the worst case is given by 

This bound is plotted in Fig. 11 along with the generalized 
Liu and Layland bound and the PS bound. It is a decreasing 
function of Uo for Uo E [0,1/2]. If UO = 0, the bound is 
In 2 = 0.693, the Liu and Layland bound. If UO = 1/2, the 
bound is 112 + ln(9/8) = 0.618. 

We complete the analysis by computing the worst case 
utilization for the situation in which T, = 2(Co+To). Because 
Tn/T1 < 2, we assume TO < CO + TO < TI < . . . < T,-1 < 
T, = 2(Co +To). 

It is obvious that we can reduce consideration to the case 
To < 2C0 + To 5 Ti < . . .  < Tn-l < Go + 2To < 
2(Co + TO) = T,. For this case, the minimum utilization is 
achieved when 

The resulting utilization is given by 

where R, = TJTi-1 and T,, = ~ ( C O  + TO). Standard 
minimization arguments lead to 

which is minimized by setting R1 = 2U0 + 1. Thus, the 
minimum utilization for this case is 

or as n -+ o(: 

Direct comparison with the results for the three cases con- 
sidered before show these bounds to be identical to the Case 
2 bounds (see Eq. 40) and uniformly larger than those for 
Case 3 (see Eq. 57). Consequently, Tn = 2Go + 27’0 cannot 
correspond to the worst case. This shows that Tn/To < 2+ Uo 
is a necessary condition for a worst case task set. 
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