OS Initialization Review: From the Electron to The Boot

LISHA/UFSC

Prof. Dr. Antônio Augusto Fröhlich
guto@lisha.ufsc.br
http://www.lisha.ufsc.br/Guto

March 2011
What is an OS at all?

- Habermann: “Everything between hardware and applications”
- OS handles abstraction levels
 - Everything, from electrons to Java
- To become a OS developer one needs:
 - knowledge of computer architecture
 - notions of electronic circuits
 - outstanding programming skills

- How will you learn this?
 - Deep diving into a PC operating system
Why a PC?

- OSs for PCs are very complex
 - Legacy
 - Lack of standards
Starting the Machine

- When the PC's 'Power' button is pushed:
 - Start the SMPS (switched-mode power supply)
 - Integrity depends on precise voltage regulation
 - SMPS stabilizes and then
 - CPU comes to a cold-reset
 - It needs to be initialized (booted)
 - Most common architecture today: Intel's x86
 - Why?
 - IBM: x86 and DOS to replace Motorola's 68k and CPM16
Intel 8088 Architecture

From CSedukit.com
“Modern” x86 Architecture

- **Limitations**
 - No register banks
 - No internal bus
 - cx => IO
 - bx => ULA
 - Backward compatibility
 - Will live with that
 - x86 is super-scalar
 - Microcode
 - Communication to the internal architecture
 - Speculative execution
 - Indeterminism

Figure 1. Pentium block diagram.
BIST – Built-In Self Test

- Microcode (firmware) ran at boot
 - Checks hardware integrity
 - Turns on stable units
 - e.g.:
 - division bug on the Pentium I processor
 - handling of failures in production process

- BIST generates report on hardware status
 - At the BIOS, 1048 bits
 - Things may be turned on and off by micro-fuses

- After the BIST
 - Processor ready to call first software instruction
Booting “For Real”

- Intel's Basic Architecture Manual
 - Section 9.4.1 – First Instruction Executed
 - 0xFFFFFFF0
 - In x86 real mode
 - It is a “jmp #BIOS_ADDR”
 - Why does it have 16-bytes instead of 32 bits?
 - Why at the “top” (4GB)?
- It allows different sizes of BIOS memories
- Flexibility for system developers
BIOS POST

POST – Power-On Self Test

- What comes first? BIOS or VGA?
 - Hooks for peripheral initialization
 - VGA comes first
- Initializes legacy peripherals
 - Keyboard, serial, parallel ports, buses
 - South-bridge - ISA (timing legacy)
- Initialize remaining things (new stuff)
- Memory test - write-read-compare procedure
 - A few chips feature smart controllers (self-test)
 - For others run test until it fails (memory top reached)
- POST report status to NVRAM (CMOS)
 - At internal RTC (!)
 - No standard report – useless for generic OS
Initializing the machine

- After POST, BIOS initialization code
 - Run at 8086 mode (Real mode)
 - BIOS implements drivers in 16-bits code
 - Useless for modern OS
 - Drivers re-implemented with 32-bits code by OS
- Why are BIOS still in use?
 - Hardware bugs “workarounds” at BIOS
- Final initialization hooks
 - Auxiliary boot
 - e.g., network (remote boot)
 - USB is not here, BIOS emulates it as a disc
 - If no auxiliary boot
 - Load and fetch the first sector of the first boot
 - MBR – Master Boot Record, 512 bytes at 0x7c00
 - Here is the bootstrap
x86 Bootstrap

What is that?
• It is all that need to be done before forgetting about the BIOS
• Read bootloader from disc to RAM
• Enter Protected mode (32 or 64 bits)
• Call bootloader
• Needs special tools to be assembled (as86)
• From this point on system is functional
 • May execute “generic”, 32 bits, compiled code
• Although lots of architecture-specific configuration still needs to be performed...
x86 Architecture Legacy Overview

- MMU (Memory Management Unit)
 - Paging X Segmentation
 - Internal X external fragmentation
 - Unfinished 8086 => (CS << 4) + offset