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Hardware Support Tools

 Proto-boards
 Development kits

● Microcontroller sockets
● Input and output

●Leds and buttons 
● Flash writer
● JTAG
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Software Support Tools

 Emulators
● Easy of development (debugging, live inspections, 

etc)
 Cross-compilers

● Develop on a host (e.g. PC with Windows or Linux)
● Compile for a target ES

 Monitors
● Upload firmware
● Integrity checks

 Cross-debuggers
● Agent on a target ES
● Debugger on a host (e.g. GDB)
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Embedded System Design

 Embedded system design involves both 
software and hardware elements
● Software/hardware co-design

 Typical characteristics of embedded systems
● Single-functioned

●Executes a single application program, repeatedly
● Tightly-constrained

●Low cost, low power, small, fast, etc ...
● Reactive and real-time

●Continually reacts to changes in the system’s environment
●Must compute certain results in real-time without delay
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Application-Orientation

 An embedded system exists to perform the 
tasks specified by a single (set of) application 
program (s)

 Application requirements guide the 
development process
● defining a software system architecture
● that is build upon a hardware system architecture



M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 24

Software/Hardware Co-Design

 The design of software and hardware for 
embedded systems is usually carried out as a 
single process

 Procedure
1.Specify application requirements (functional, temporal, 

etc)
2.Look for an adequate software architecture that satisfy 

application requirements
3.Look for a (the minimal) hardware architecture that is 

able to  support the software architecture defined
4.Repeat steps 2 and 3 until a compromise is set 

outputting the design documents necessary to support 
the implementation of both software and hardware
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 Real-time systems
"A real-time system is a system whose correctness 
includes its response time as well as its functional 
correctness”. 

(Locke, 2000)

 How to ensure correctness and determinism?
● Formal modeling
● Testing and benchmarking

 Classifications
● Soft real-time
● Hard real-time

Real-Time Constraints
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Industry Metrics

 Unit cost
● the monetary cost of manufacturing each copy of 

the system
 Non-recurring engineering cost (NRE)

● the one-time monetary cost of designing the 
system

 Physical size
 Performance
 Power consumption
 Flexibility

● the ability to change the functionality of the system 
without incurring heavy NRE cost
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More Industry Metrics

 Time-to-prototype
● the time needed to build a working version of the 

system
 Time-to-market

● the time required to develop a system to the point 
that it can be released and sold to customers

 Maintainability
● the ability to modify the system after its initial 

release
 and of course

● Correctness
● Safety
● etc
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Typical Embedded Software 
Architectures 

 Not to to be forgotten
● The simplest architecture that satisfy the 

requirements of the application is the best
 Cyclic executive

● Round-robin
● Round-robin with interrupts
● Function queue scheduling

 Real-time operating system
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Round-Robin

 Poll all I/O devices in a loop, eventual 
activating the corresponding tasks

 Example: digital voltmeter
1.check position of scale button
2.check status of hold button
3.read the voltage from A/D converter
4.perform scale conversions
5.if !hold then update display
6.goto 1
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Round-Robin Pseudo Code

int main(void)
{
while(true) {
if( // I/O Device A needs service ) { // Task A
// Handle I/O from Device A
// Perform Task A duties

  }
if( // I/O Device B needs service ) { // Task B
// Handle I/O from Device B
// Perform Task B duties

  }
...
if( // I/O Device Z needs service ) { // Task Z
// Handle I/O from Device Z
// Perform Task Z duties

  }
}

}
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Reasoning about Round-Robin

 Pros
● Simplicity

●No interrupts and no shared data
 Cons

● Maximum waiting time for a device is the loop 
length
●Device Z waits the time to handle devices A through Y
●Loss of interactivity

● Limited overcome: A, B, Z, C, D, Z, E, F, Z, ...

● Delays in the handling of any device can 
compromise the servicing of other devices and 
even the correctness of the whole system
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Round-Robin with Interrupts

 Urgent events generate interrupts
● High-priority tasks are handled inside interrupt 

service routines (ISR)
● Low-priority tasks are handled as round-robin tasks 

implemented on the main routine
 Shared data pitfalls 

● Interaction between tasks and ISRs is handled via 
shared variables

● Race conditions must be prevented by proper 
synchronization of critical sections



M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 33

Example for Round-Robin with 
Interrupts

 Full-duplex network bridge
● ISRs

●Receive port A incoming packets into a private ring buffer 
(A -> B)

●Receive port B incoming packets into a private ring buffer 
(B -> A)

● main
1.if port A is free for sending and there are packets on the 

corresponding ring buffer then forward a packet
2.if port B is free for sending and there are packets on the 

corresponding ring buffer then forward a packet
3.goto 1
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Round-Robin with Interrupts Pseudo 
Code

bool Task_X, Task_Y = false;

void Handle_A(void)
  __attribute__((interrupt)) 
{

// Service interrupts from 
I/O Device A

Task_X = true; 
}

void Handle_B(void)
  __attribute__((interrupt)) 
{

// Service interrupts from 
I/O Device B

Task_X = true; 
Task_Y = true;

}

int main(void)
{

while(true) {
if(Task_X) { // Task X
  // Perform Task X 
duties
Task_X = false;

}

if(Task_Y) { // Task Y
  // Perform Task Y 
duties
Task_Y = false;

}
}

}
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Race Conditions in Round-Robin with 
Interrupts

bool Task_X = false;

void Handle_A(void) __attribute__((interrupt)) {
// Service interrupts from I/O Device A
Task_X = true; 

}
...

int main(void)
{
while(true) {
if(Task_X) { // Task X
  // Perform Task X duties
Task_X = false;

}
...

}
}

load r3, 0
load r4, &Task_X
store (r4), r3

load r1, 1
load r2, &Task_X
store (r2), r1

 in
te

rr
up
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Reasoning about Round-Robin with 
Interrupts

 Pros
● Ability to handle urgent events due the different 

priority of ISRs and  round-robin tasks
 Cons

● Round-robin tasks have all the same priority
●some code gets shifted into ISRs
● ISRs tend to grow, thus generating delays

● Responsiveness of round-robin tasks depends on 
asynchronous external events
●Worst case: all tasks + variable ISRs

● Race conditions
●demand synchronization
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Function Queue Scheduling

 ISRs add function pointers to a scheduling 
queue
● Priority scheme defined by queue's elements order

●high-priority tasks enqueued at the head
● low-priority tasks enqueued at the tail
●or explicit priority assignments 

 Loop in the main function activates the task at 
the head of the scheduling queue

 Example: surveillance system
● ISRs for each kind of sensor (in priority order) 

trigger alarms
● tasks for handling different levels of alarms
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Function Queue Scheduling Pseudo 
Code

Queue Ready;

void Handle_A(void)
  __attribute__((interrupt)) 
{

// Service interrupts from 
I/O Device A

enqueue(Ready, &Task_X);
}

void Handle_B(void)
  __attribute__((interrupt)) 
{

// Service interrupts from 
I/O Device B

enqueue(Ready, &Task_X);
enqueue(Ready, &Task_Y);

}

int main(void)
{

while(true)
if(!queue_empty(Ready))
  dequeue(Ready)();

}

void Task_X(void) {
  // Perform Task X duties
}

void Task_Y(void) {
  // Perform Task Y duties
}
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Reasoning about Function Queue 
Scheduling

 Pros
● Ability to define a sophisticated priority scheme

 Cons
● Longer task code functions can affect system 

response time
● A higher-priority task must wait for the current task 

to release the processor
●Worst case: time of the longest task
●Limited overcome: break long tasks in pieces (can be 

complicated!)
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Real-Time Operating System

 Tasks abstracted as processes (threads)
● Preemptive priority scheduling implemented by the 

OS
 Interaction between ISR and processes via 

signals
● No race conditions

 Some level of hardware abstraction
● Typical devices: UART, keys, display, etc
● Sensors and actuators
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Example for Real-Time Operating 
System

 Air plane fly-by-wire system
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Real-Time Operating System Pseudo 
Code

Signal Signal_A, Signal_B;

void Handle_A(void)
  __attribute__((interrupt)) 
{

// Service interrupts from 
I/O Device A

signal(Signal_A);
}

void Handle_B(void)
  __attribute__((interrupt)) 
{

// Service interrupts from 
I/O Device B

signal(Signal_A);
signal(Signal_B);

}

int main(void)
{
  thr_x = thread_new(Task_X,
                     Pri_X);
  thr_y = thread_new(Task_Y,
                     Pri_Y);

  catch(Signal_A, thr_x);
catch(Signal_B, thr_y);

}

void Task_X(void) {
  while(true) {
    // Perform Task X duties
    sleep();
  }
}

void Task_Y(void) { ...
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Reasoning about Real-Time OS

 Pros
● Improve application development 

● raises the level of abstraction
●enable software reuse

● Improve predictability
 Cons

● The OS itself consumes resources (processing 
time, memory, etc)
“... once you decide to use an RTOS, your best design is 
often the one that uses it least.” [Simon:2003]

● Complex to develop
●Overcome: you'll probably find one to buy that fulfills your 

requirements!
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Embedded System Programming

 Combination of
● Paradigms 

●Structured
●Object-oriented

● Languages
●Assembly, C, C++
●Ada? Eifel?

● Tools 
●Preprocessors
●Assemblers
●Compilers
●Linkers
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Preprocessors

 Preprocessors do mostly simple textual 
substitution of program fragments
● Unaware of programming language syntax and 

semantics
 CPP: the C Preprocessor

● Directives are indicated by lines starting with #
● Directives to

● Include other files (#include)
●Define macros and symbolic constant (#define)
●Conditionally compile program fragments (#ifdef)
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Assembly Language

 Assembly language
“A symbolic representation of the machine language 
of a specific processor. “ 

(Foldoc)
 Assembler

● Converts assembly language into machine code 
 Is assembly still used?

● Assembly programming is costly and error-prone
● But a few low-level tasks cannot be expressed in 

high-level languages
● And compilers still need code generators ...
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Example of Assembly Program

/* Routine to blink the leds on the Atmel STK 500 AVR 
kit */

#define DDRB   0x17  /* I/O PORT B data direction 
register (0 -> in, 1 -> out) */

#define PORTB  0x18  /* I/O PORT B data register */

    .text
.global blink_leds
blink_leds:
    ldi   r20, 0xff   ; set PORTB to output
    out   DDRB, r20

    ldi   r21, 0x00   ; all leds ON
    out   PORTB, r21
    rcall delay       ; cause some delay
    ldi   r22, 0xff   ; all leds OFF
    out   PORTB, r22
    rcall delay       ; cause some delay
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The C Programming Language

 Designed by Ritchie at Bell Labs in the early 
70's
● As a system programming language for UNIX
● Embedded system industry standard (ANSI C)

 The “portable assembly language”
● Allows for low-level access to the hardware mostly 

like assembly does
● Can be easily compiled for different architectures

 The “high-level programing language”
● As high-level as the high-level programming 

languages of its time
● No longer suitable for most application 

development
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Example of C Program

#ifndef N
#define N 10
#endif
#define MAX(a,b) \
  ((a) > (b) ? (a) : (b))
              
int main() {
  int i;
  int result = 5;

  for(i = 0; i < N; i++)
    result = MAX(i, 

result);

  return result;
}

int main() {
  int i;
  int result = 5;

  for(i = 0; i < 10; i++)
    result = ((i) > 

(result)
              ?(i):

(result));

  return result;
}

preprocessing

cpp / cc ­E
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Mixing C and Assembly (GCC)

 Why to embed assembly in a C program?
● To gain low-level access to the machine in order to 

provide a hardware interface for high-level software 
constructs

 When the compiler encounters assembly 
fragment in the input program, it simply copies 
them directly to the output

int main() {
asm(“nop”);
return 0;

}

compiling

gcc ­S 

...
main:
    ...
    nop
    ...
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Example of C with inline Assembly

 Hitachi H8/300 save-context routine
void H8_Context_save() {
    asm("orc   #0x80, ccr   \n"
        "mov.w r6, @(14,r0) \n" /* r6 */

          "stc   ccr, r6l     \n"
          "mov.w r6, @(12,r0) \n" /* cc */
          "mov.w r5, @(0,r0)  \n" /* r5 */
          "mov.w r4, @(2,r0)  \n" /* r4 */
          "mov.w r3, @(4,r0)  \n" /* r3 */
          "mov.w r2, @(6,r0)  \n" /* r2 */
          "mov.w r1, @(8,r0)  \n" /* r1 */
          "mov.w r0, @(10,r0) \n" /* r0 */
          "mov.w @(0,r7), r6  \n"
          "mov.w r6, @(16,r0) \n" /* pc */
          "mov.w @(14,r0) ,r6 \n" /* Restoring r6 */
          "andc #0x7F, ccr    \n"
          "rts                \n");
}
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GCC Extended Assembly

 asm statements with operands that are C 
expressions

 Basic format
asm("assembler template"
    : output operands  /* optional */
    : input operands   /* optional */
    : list of clobbered registers /* optional */
);
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GCC Extended Assembly

 Assembler template
● The set of assembly instructions that will be 

inserted in the C program
● Operands corresponding to C expressions are 

represented by “%n” in the asm statement, with “n” 
being the order in which they appear in the 
statement

● Example (IA-32)

int a = 10, b;
asm("movl %1, %0;"
    :"=r"(b) /* output operands */
    :"r"(a)  /* input operands */
    :        /* clobbered register */
);
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GCC Extended Assembly

 Operands
● Preceded by a constraint
r operand in a general purpose register
m operand in memory (any supported addressing mode)
o operand in memory, address must be offsetable 
i operand is an immediate (integer constant)  
 ...many others, including architecture-specific ones

● Input operand constraints
●Are met before issuing the instructions in the asm 

statement
● Output operand constraints (begin with “=”)

●Are met after issuing the instructions in the asm statement
 Example (AVR8)
asm("" : : "z"(mem_prog) : );
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GCC Extended Assembly

 Clobber list
● Some instructions can clobber (overwrite) registers 

and memory locations
● By listing them, we inform the compiler that they 

will be modified and their original values should no 
longer be trusted

● Example (IA-32)

int a = 10, b;
asm("movl %1, %%eax; movl %%eax, %0;"
    :"=r"(b)  /* output operands */
    :"r"(a)   /* input operands */
    :"%eax"   /* clobbered register */
);
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GCC Extended Assembly

 Volatile assembly
● When the assembly statement must be inserted 

exactly where it was placed
● When a memory region accessed by the assembly 

statement was not listed in the input or output 
operands

● Example (IA-32)

int a=10;
asm __volatile__ ("movl %0, 0xfefa;"
                  :  /* output operands */
                  :"r"(a)   /* input operands */
                  :    /* clobbered register */
);
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The C++ Programming Language

 Designed by Stroustrup at Bell Labs in the 
early 80's
● As a multiparadigm programming language
● Superset of C (a C program a valid C++ program)
● Strongly typed
● Supports object-oriented programming (classes , 

inheritance, polymorphism, etc)  
● Supports generative programming techniques

 Embedded software != applicative software
● Rational use of late binding (polymorphism, 

dynamic casts, etc)
● Extended use of static metaprogramming
● Always take a look at the assembly produced
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Example of C++ Program

struct AVR8 {
    Reg8 r0;
    // ...
    union {
        struct{
           Reg8 r30;
           Reg8 r31;
        };

Reg16 z;
    };
};

struct AT90S: public AVR8
{
    static const unsigned 

short RAM_SIZE = 0x0200;

    IOReg8 reserved_00;
    // ...

    IOReg8 sreg;       

    char ram[RAM_SIZE];
};

int main()
{
    AT90S * at90s = reinte 

rpret_cast<AT90S *>(0);

    at90s->ddrb = 0xff;
    while(true) {

at90s->portb = 0;
delay();
at90s->portb = 0xff;
delay();

    }

    return 0;
}
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Mixing C++ and C

 C++ and C use different linkage and symbol 
generation conventions
● C++ does name mangling

●Symbols corresponding to member functions embed 
parameter types

 In order to call C functions from C++
extern “C” { /* C function prototypes */ }

 In order to call C++ functions from C
● one has to know the mangled function names
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Linking

 Linkage
● The process of collecting relocatable object files 

into a executable
 Styles of linking

● Static linking, dynamic linking, runtime linking
 Linker scripts

SECTIONS {
.text 0x8000:   {
        *(.text)
        *(.rodata)
        *(.strings)
         _etext = .
        }  > ram

.data : {
        *(.data)
        *(.tiny)
         _edata = .
        }  > ram

}
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Embedded Software Debugging

 Debugging
“Debugging is the process of locating and fixing 
errors (known as bugs), in a computer program or 
hardware device”

(PIE Software Inc.)
 Strategies of debugging 

● Leds
● Display
● Serial
● GDB Client
● JTAG
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Embedded Software Debugging

 GDB Client
● GDB provides a "remote target" debugging 

capability across a serial port or network 
connection
●A small program running on the target hardware helps 

GDB carry out requests to monitor and control the 
application being debugged
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Joint Test Access Group (JTAG)

 Formed in 1985 to develop a method to test 
populated circuit boards after manufacture

 Defined a test and programming interface for 
digital IC's used by over 200 electronic 
companies
● Large shift register through the entire IC where 

each bit (ports, RAM, register etc.) can be 
accessed like a conveyor belt in a parcel 
distribution

 First processor released with JTAG in 1990
● Intel 80486
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JTAG: Interface

 Interface
● Test Data Input (TDI)
● Test Mode Select (TMS)
● Clock (TCK)
● Reset (TRST)
● Test Data Output (TDO)
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JTAG: Boundary Scan

Pin(0,2): Input
Pin(1,2): Output
C(0-4): BSR
I(0-4): Internal
E(0-4): External
N(0-4): Normal
IDR: Hardwired
BR: 1-clk delay
IR: TAP instr
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JTAG: Daisy Chain
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JTAG: TAP State Machine

*-> test logic reset
--> run test idle
--> select DR scan
--> select IR scan
--> capture IR
--> shift IR --> ... n 

times ... --> shift 
IR

--> exit1 IR
--> update IR
--> run test idle ->*
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JTAG: Operation

 Instruction and Data Register -> IR(IR path)
 Value -> DR (DR path)(N times)
 Public Instructions

● BYPASS
● IDCODE
● EXTEST
● INTEST

 Private 
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Case Study: AVR JTAG
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Case Study: AVR JTAG

 The flash and EEPROM memory in the AVR 
can be programmed in-system

 Each peripheral unit of the controller can be 
easily accessed, tested and debugged

 The CPU can be stopped or single-stepped
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Embedded Software Testing

 Testing
“The process of operating a system or component 
under specified conditions, observing or recording 
the results, and making an evaluation of some 
aspect of the system or component.”

(IEEE Std 610.12-1990)

“A disciplined process that consists of evaluating the 
application (including its components) behavior, 
performance, and robustness - usually against 
expected criteria”

(Vincent Encontre – IBM)
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Embedded Software Testing

 Why testing
● To check if product meets functional and 

performance targets
● To ensure safety and regulatory compliance
● To ensure that production standards are met

 Errors in embedded software are critical
● We cannot restart an embedded system using “ctrl

+alt+del” 
 If we don't test the system, the user will do it
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Embedded Software Testing

 In 1979 an AT&T software bug knocked out all 
long-distance phone service to Greece

switch(MessageType) {
case INCOMING_MESSAGE 
   if (RemoteSwitch == NOT_IN_SERVICE) {

      if (LocalBuffer == EMPTY )
  SendInServiceMsg(3B);

      else
              break; /*Bad News!*/
   }
   ProcessIncomingMessage(); /*Statement skipped*/
   break;
//...
}
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Embedded Software Testing

 Challenges in testing embedded systems
● Coexistence of various implementation paradigms
● Lack of clear design models
● A wide range of deployment architectures
● Limited direct interfaces
● Limited processing resources and spare memory
● Physical restrictions
● Many test tools don’t support embedded testing
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Types of Testing

 Black box versus White box
● Black box testing assumes no knowledge of the 

internal structure or design of the product
● White box testing has detailed knowledge of 

internal structure and design
 Conformance versus Benchmarking

● Conformance testing checks that product meets its 
specifications

● Benchmarking records/characterizes the level of 
performance, capability, capacity, etc. that the 
product has
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Types of Testing

 Qualification versus Regression
● Qualification testing checks that the product first 

meets a required objective
● Regression testing checks that it continues to meet 

that objective after some change has been made to 
the product

 Structured versus Ad-hoc testing
● Structured testing defines the precise details 

related to the test before execution
●  This usually follows a defined process from specifications 

through to documented tests
● Ad-hoc testing uses a tester's experience to direct 

the testing activities
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Types of Testing

 Controlled  versus Live environment testing
● Controlled environments allow the operations and 

behavior of a target product to be exercised in 
controlled and measured way
●  This allows greater repeatability of testing

● Live (in-service) testing in a full operational 
environment will always be needed to some degree 
 (e.g. Beta-test, acceptance test)
● Inevitably, live testing is always less controlled and 

predictable
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Strategies of Testing

 Test scaffolds
● A software that provides the same entry points as 

does the hardware-dependent code on the target 
system, and it calls the same functions in the 
hardware-independent code

● The host system is a much friendlier environment 
for testing than the target

 Instruction set simulators
● Programs that run on host and mimic the target 

microprocessor and memory
● Help to determine response and throughput and to 

test your startup code
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Strategies of Testing

 Assert macro
● The assert macro tests assumptions in the code 

and forces the running program to stop 
immediately if one of those assumptions is false

 Laboratory tools
● Multimeters, oscilloscopes, logic analyzers, etc.

 Monitors
● A combination if software and hardware to give you 

standard debugging capabilities (leds, displays ...)


