
M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 19

Embedded System Development

LISHA/UFSC

Prof. Dr. Antônio Augusto Fröhlich
Fauze Valério Polpeta

Lucas Francisco Wanner
http://www.lisha.ufsc.br/~guto

March 2009

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 20

Hardware Support Tools

 Proto-boards
 Development kits

● Microcontroller sockets
● Input and output

●Leds and buttons
● Flash writer
● JTAG

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 21

Software Support Tools

 Emulators
● Easy of development (debugging, live inspections,

etc)
 Cross-compilers

● Develop on a host (e.g. PC with Windows or Linux)
● Compile for a target ES

 Monitors
● Upload firmware
● Integrity checks

 Cross-debuggers
● Agent on a target ES
● Debugger on a host (e.g. GDB)

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 22

Embedded System Design

 Embedded system design involves both
software and hardware elements
● Software/hardware co-design

 Typical characteristics of embedded systems
● Single-functioned

●Executes a single application program, repeatedly
● Tightly-constrained

●Low cost, low power, small, fast, etc ...
● Reactive and real-time

●Continually reacts to changes in the system’s environment
●Must compute certain results in real-time without delay

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 23

Application-Orientation

 An embedded system exists to perform the
tasks specified by a single (set of) application
program (s)

 Application requirements guide the
development process
● defining a software system architecture
● that is build upon a hardware system architecture

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 24

Software/Hardware Co-Design

 The design of software and hardware for
embedded systems is usually carried out as a
single process

 Procedure
1.Specify application requirements (functional, temporal,

etc)
2.Look for an adequate software architecture that satisfy

application requirements
3.Look for a (the minimal) hardware architecture that is

able to support the software architecture defined
4.Repeat steps 2 and 3 until a compromise is set

outputting the design documents necessary to support
the implementation of both software and hardware

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 25

 Real-time systems
"A real-time system is a system whose correctness
includes its response time as well as its functional
correctness”.

(Locke, 2000)

 How to ensure correctness and determinism?
● Formal modeling
● Testing and benchmarking

 Classifications
● Soft real-time
● Hard real-time

Real-Time Constraints

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 26

Industry Metrics

 Unit cost
● the monetary cost of manufacturing each copy of

the system
 Non-recurring engineering cost (NRE)

● the one-time monetary cost of designing the
system

 Physical size
 Performance
 Power consumption
 Flexibility

● the ability to change the functionality of the system
without incurring heavy NRE cost

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 27

More Industry Metrics

 Time-to-prototype
● the time needed to build a working version of the

system
 Time-to-market

● the time required to develop a system to the point
that it can be released and sold to customers

 Maintainability
● the ability to modify the system after its initial

release
 and of course

● Correctness
● Safety
● etc

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 28

Typical Embedded Software
Architectures

 Not to to be forgotten
● The simplest architecture that satisfy the

requirements of the application is the best
 Cyclic executive

● Round-robin
● Round-robin with interrupts
● Function queue scheduling

 Real-time operating system

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 29

Round-Robin

 Poll all I/O devices in a loop, eventual
activating the corresponding tasks

 Example: digital voltmeter
1.check position of scale button
2.check status of hold button
3.read the voltage from A/D converter
4.perform scale conversions
5.if !hold then update display
6.goto 1

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 30

Round-Robin Pseudo Code

int main(void)
{
while(true) {
if(// I/O Device A needs service) { // Task A
// Handle I/O from Device A
// Perform Task A duties

 }
if(// I/O Device B needs service) { // Task B
// Handle I/O from Device B
// Perform Task B duties

 }
...
if(// I/O Device Z needs service) { // Task Z
// Handle I/O from Device Z
// Perform Task Z duties

 }
}

}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 31

Reasoning about Round-Robin

 Pros
● Simplicity

●No interrupts and no shared data
 Cons

● Maximum waiting time for a device is the loop
length
●Device Z waits the time to handle devices A through Y
●Loss of interactivity

● Limited overcome: A, B, Z, C, D, Z, E, F, Z, ...

● Delays in the handling of any device can
compromise the servicing of other devices and
even the correctness of the whole system

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 32

Round-Robin with Interrupts

 Urgent events generate interrupts
● High-priority tasks are handled inside interrupt

service routines (ISR)
● Low-priority tasks are handled as round-robin tasks

implemented on the main routine
 Shared data pitfalls

● Interaction between tasks and ISRs is handled via
shared variables

● Race conditions must be prevented by proper
synchronization of critical sections

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 33

Example for Round-Robin with
Interrupts

 Full-duplex network bridge
● ISRs

●Receive port A incoming packets into a private ring buffer
(A -> B)

●Receive port B incoming packets into a private ring buffer
(B -> A)

● main
1.if port A is free for sending and there are packets on the

corresponding ring buffer then forward a packet
2.if port B is free for sending and there are packets on the

corresponding ring buffer then forward a packet
3.goto 1

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 34

Round-Robin with Interrupts Pseudo
Code

bool Task_X, Task_Y = false;

void Handle_A(void)
 __attribute__((interrupt))
{

// Service interrupts from
I/O Device A

Task_X = true;
}

void Handle_B(void)
 __attribute__((interrupt))
{

// Service interrupts from
I/O Device B

Task_X = true;
Task_Y = true;

}

int main(void)
{

while(true) {
if(Task_X) { // Task X
 // Perform Task X
duties
Task_X = false;

}

if(Task_Y) { // Task Y
 // Perform Task Y
duties
Task_Y = false;

}
}

}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 35

Race Conditions in Round-Robin with
Interrupts

bool Task_X = false;

void Handle_A(void) __attribute__((interrupt)) {
// Service interrupts from I/O Device A
Task_X = true;

}
...

int main(void)
{
while(true) {
if(Task_X) { // Task X
 // Perform Task X duties
Task_X = false;

}
...

}
}

load r3, 0
load r4, &Task_X
store (r4), r3

load r1, 1
load r2, &Task_X
store (r2), r1

 in
te

rr
up

t

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 36

Reasoning about Round-Robin with
Interrupts

 Pros
● Ability to handle urgent events due the different

priority of ISRs and round-robin tasks
 Cons

● Round-robin tasks have all the same priority
●some code gets shifted into ISRs
● ISRs tend to grow, thus generating delays

● Responsiveness of round-robin tasks depends on
asynchronous external events
●Worst case: all tasks + variable ISRs

● Race conditions
●demand synchronization

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 37

Function Queue Scheduling

 ISRs add function pointers to a scheduling
queue
● Priority scheme defined by queue's elements order

●high-priority tasks enqueued at the head
● low-priority tasks enqueued at the tail
●or explicit priority assignments

 Loop in the main function activates the task at
the head of the scheduling queue

 Example: surveillance system
● ISRs for each kind of sensor (in priority order)

trigger alarms
● tasks for handling different levels of alarms

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 38

Function Queue Scheduling Pseudo
Code

Queue Ready;

void Handle_A(void)
 __attribute__((interrupt))
{

// Service interrupts from
I/O Device A

enqueue(Ready, &Task_X);
}

void Handle_B(void)
 __attribute__((interrupt))
{

// Service interrupts from
I/O Device B

enqueue(Ready, &Task_X);
enqueue(Ready, &Task_Y);

}

int main(void)
{

while(true)
if(!queue_empty(Ready))
 dequeue(Ready)();

}

void Task_X(void) {
 // Perform Task X duties
}

void Task_Y(void) {
 // Perform Task Y duties
}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 39

Reasoning about Function Queue
Scheduling

 Pros
● Ability to define a sophisticated priority scheme

 Cons
● Longer task code functions can affect system

response time
● A higher-priority task must wait for the current task

to release the processor
●Worst case: time of the longest task
●Limited overcome: break long tasks in pieces (can be

complicated!)

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 40

Real-Time Operating System

 Tasks abstracted as processes (threads)
● Preemptive priority scheduling implemented by the

OS
 Interaction between ISR and processes via

signals
● No race conditions

 Some level of hardware abstraction
● Typical devices: UART, keys, display, etc
● Sensors and actuators

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 41

Example for Real-Time Operating
System

 Air plane fly-by-wire system

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 42

Real-Time Operating System Pseudo
Code

Signal Signal_A, Signal_B;

void Handle_A(void)
 __attribute__((interrupt))
{

// Service interrupts from
I/O Device A

signal(Signal_A);
}

void Handle_B(void)
 __attribute__((interrupt))
{

// Service interrupts from
I/O Device B

signal(Signal_A);
signal(Signal_B);

}

int main(void)
{
 thr_x = thread_new(Task_X,
 Pri_X);
 thr_y = thread_new(Task_Y,
 Pri_Y);

 catch(Signal_A, thr_x);
catch(Signal_B, thr_y);

}

void Task_X(void) {
 while(true) {
 // Perform Task X duties
 sleep();
 }
}

void Task_Y(void) { ...

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 43

Reasoning about Real-Time OS

 Pros
● Improve application development

● raises the level of abstraction
●enable software reuse

● Improve predictability
 Cons

● The OS itself consumes resources (processing
time, memory, etc)
“... once you decide to use an RTOS, your best design is
often the one that uses it least.” [Simon:2003]

● Complex to develop
●Overcome: you'll probably find one to buy that fulfills your

requirements!

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 44

Embedded System Programming

 Combination of
● Paradigms

●Structured
●Object-oriented

● Languages
●Assembly, C, C++
●Ada? Eifel?

● Tools
●Preprocessors
●Assemblers
●Compilers
●Linkers

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 45

Preprocessors

 Preprocessors do mostly simple textual
substitution of program fragments
● Unaware of programming language syntax and

semantics
 CPP: the C Preprocessor

● Directives are indicated by lines starting with #
● Directives to

● Include other files (#include)
●Define macros and symbolic constant (#define)
●Conditionally compile program fragments (#ifdef)

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 46

Assembly Language

 Assembly language
“A symbolic representation of the machine language
of a specific processor. “

(Foldoc)
 Assembler

● Converts assembly language into machine code
 Is assembly still used?

● Assembly programming is costly and error-prone
● But a few low-level tasks cannot be expressed in

high-level languages
● And compilers still need code generators ...

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 47

Example of Assembly Program

/* Routine to blink the leds on the Atmel STK 500 AVR
kit */

#define DDRB 0x17 /* I/O PORT B data direction
register (0 -> in, 1 -> out) */

#define PORTB 0x18 /* I/O PORT B data register */

 .text
.global blink_leds
blink_leds:
 ldi r20, 0xff ; set PORTB to output
 out DDRB, r20

 ldi r21, 0x00 ; all leds ON
 out PORTB, r21
 rcall delay ; cause some delay
 ldi r22, 0xff ; all leds OFF
 out PORTB, r22
 rcall delay ; cause some delay

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 48

The C Programming Language

 Designed by Ritchie at Bell Labs in the early
70's
● As a system programming language for UNIX
● Embedded system industry standard (ANSI C)

 The “portable assembly language”
● Allows for low-level access to the hardware mostly

like assembly does
● Can be easily compiled for different architectures

 The “high-level programing language”
● As high-level as the high-level programming

languages of its time
● No longer suitable for most application

development

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 49

Example of C Program

#ifndef N
#define N 10
#endif
#define MAX(a,b) \
 ((a) > (b) ? (a) : (b))

int main() {
 int i;
 int result = 5;

 for(i = 0; i < N; i++)
 result = MAX(i,

result);

 return result;
}

int main() {
 int i;
 int result = 5;

 for(i = 0; i < 10; i++)
 result = ((i) >

(result)
 ?(i):

(result));

 return result;
}

preprocessing

cpp / cc ­E

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 50

Mixing C and Assembly (GCC)

 Why to embed assembly in a C program?
● To gain low-level access to the machine in order to

provide a hardware interface for high-level software
constructs

 When the compiler encounters assembly
fragment in the input program, it simply copies
them directly to the output

int main() {
asm(“nop”);
return 0;

}

compiling

gcc ­S

...
main:
 ...
 nop
 ...

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 51

Example of C with inline Assembly

 Hitachi H8/300 save-context routine
void H8_Context_save() {
 asm("orc #0x80, ccr \n"
 "mov.w r6, @(14,r0) \n" /* r6 */

 "stc ccr, r6l \n"
 "mov.w r6, @(12,r0) \n" /* cc */
 "mov.w r5, @(0,r0) \n" /* r5 */
 "mov.w r4, @(2,r0) \n" /* r4 */
 "mov.w r3, @(4,r0) \n" /* r3 */
 "mov.w r2, @(6,r0) \n" /* r2 */
 "mov.w r1, @(8,r0) \n" /* r1 */
 "mov.w r0, @(10,r0) \n" /* r0 */
 "mov.w @(0,r7), r6 \n"
 "mov.w r6, @(16,r0) \n" /* pc */
 "mov.w @(14,r0) ,r6 \n" /* Restoring r6 */
 "andc #0x7F, ccr \n"
 "rts \n");
}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 52

GCC Extended Assembly

 asm statements with operands that are C
expressions

 Basic format
asm("assembler template"
 : output operands /* optional */
 : input operands /* optional */
 : list of clobbered registers /* optional */
);

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 53

GCC Extended Assembly

 Assembler template
● The set of assembly instructions that will be

inserted in the C program
● Operands corresponding to C expressions are

represented by “%n” in the asm statement, with “n”
being the order in which they appear in the
statement

● Example (IA-32)

int a = 10, b;
asm("movl %1, %0;"
 :"=r"(b) /* output operands */
 :"r"(a) /* input operands */
 : /* clobbered register */
);

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 54

GCC Extended Assembly

 Operands
● Preceded by a constraint
r operand in a general purpose register
m operand in memory (any supported addressing mode)
o operand in memory, address must be offsetable
i operand is an immediate (integer constant)
 ...many others, including architecture-specific ones

● Input operand constraints
●Are met before issuing the instructions in the asm

statement
● Output operand constraints (begin with “=”)

●Are met after issuing the instructions in the asm statement
 Example (AVR8)
asm("" : : "z"(mem_prog) :);

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 55

GCC Extended Assembly

 Clobber list
● Some instructions can clobber (overwrite) registers

and memory locations
● By listing them, we inform the compiler that they

will be modified and their original values should no
longer be trusted

● Example (IA-32)

int a = 10, b;
asm("movl %1, %%eax; movl %%eax, %0;"
 :"=r"(b) /* output operands */
 :"r"(a) /* input operands */
 :"%eax" /* clobbered register */
);

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 56

GCC Extended Assembly

 Volatile assembly
● When the assembly statement must be inserted

exactly where it was placed
● When a memory region accessed by the assembly

statement was not listed in the input or output
operands

● Example (IA-32)

int a=10;
asm __volatile__ ("movl %0, 0xfefa;"
 : /* output operands */
 :"r"(a) /* input operands */
 : /* clobbered register */
);

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 57

The C++ Programming Language

 Designed by Stroustrup at Bell Labs in the
early 80's
● As a multiparadigm programming language
● Superset of C (a C program a valid C++ program)
● Strongly typed
● Supports object-oriented programming (classes ,

inheritance, polymorphism, etc)
● Supports generative programming techniques

 Embedded software != applicative software
● Rational use of late binding (polymorphism,

dynamic casts, etc)
● Extended use of static metaprogramming
● Always take a look at the assembly produced

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 58

Example of C++ Program

struct AVR8 {
 Reg8 r0;
 // ...
 union {
 struct{
 Reg8 r30;
 Reg8 r31;
 };

Reg16 z;
 };
};

struct AT90S: public AVR8
{
 static const unsigned

short RAM_SIZE = 0x0200;

 IOReg8 reserved_00;
 // ...

 IOReg8 sreg;

 char ram[RAM_SIZE];
};

int main()
{
 AT90S * at90s = reinte

rpret_cast<AT90S *>(0);

 at90s->ddrb = 0xff;
 while(true) {

at90s->portb = 0;
delay();
at90s->portb = 0xff;
delay();

 }

 return 0;
}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 59

Mixing C++ and C

 C++ and C use different linkage and symbol
generation conventions
● C++ does name mangling

●Symbols corresponding to member functions embed
parameter types

 In order to call C functions from C++
extern “C” { /* C function prototypes */ }

 In order to call C++ functions from C
● one has to know the mangled function names

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 60

Linking

 Linkage
● The process of collecting relocatable object files

into a executable
 Styles of linking

● Static linking, dynamic linking, runtime linking
 Linker scripts

SECTIONS {
.text 0x8000: {
 *(.text)
 *(.rodata)
 *(.strings)
 _etext = .
 } > ram

.data : {
 *(.data)
 *(.tiny)
 _edata = .
 } > ram

}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 61

Embedded Software Debugging

 Debugging
“Debugging is the process of locating and fixing
errors (known as bugs), in a computer program or
hardware device”

(PIE Software Inc.)
 Strategies of debugging

● Leds
● Display
● Serial
● GDB Client
● JTAG

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 62

Embedded Software Debugging

 GDB Client
● GDB provides a "remote target" debugging

capability across a serial port or network
connection
●A small program running on the target hardware helps

GDB carry out requests to monitor and control the
application being debugged

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 63

Joint Test Access Group (JTAG)

 Formed in 1985 to develop a method to test
populated circuit boards after manufacture

 Defined a test and programming interface for
digital IC's used by over 200 electronic
companies
● Large shift register through the entire IC where

each bit (ports, RAM, register etc.) can be
accessed like a conveyor belt in a parcel
distribution

 First processor released with JTAG in 1990
● Intel 80486

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 64

JTAG: Interface

 Interface
● Test Data Input (TDI)
● Test Mode Select (TMS)
● Clock (TCK)
● Reset (TRST)
● Test Data Output (TDO)

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 65

JTAG: Boundary Scan

Pin(0,2): Input
Pin(1,2): Output
C(0-4): BSR
I(0-4): Internal
E(0-4): External
N(0-4): Normal
IDR: Hardwired
BR: 1-clk delay
IR: TAP instr

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 66

JTAG: Daisy Chain

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 67

JTAG: TAP State Machine

*-> test logic reset
--> run test idle
--> select DR scan
--> select IR scan
--> capture IR
--> shift IR --> ... n

times ... --> shift
IR

--> exit1 IR
--> update IR
--> run test idle ->*

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 68

JTAG: Operation

 Instruction and Data Register -> IR(IR path)
 Value -> DR (DR path)(N times)
 Public Instructions

● BYPASS
● IDCODE
● EXTEST
● INTEST

 Private

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 69

Case Study: AVR JTAG

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 70

Case Study: AVR JTAG

 The flash and EEPROM memory in the AVR
can be programmed in-system

 Each peripheral unit of the controller can be
easily accessed, tested and debugged

 The CPU can be stopped or single-stepped

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 71

Embedded Software Testing

 Testing
“The process of operating a system or component
under specified conditions, observing or recording
the results, and making an evaluation of some
aspect of the system or component.”

(IEEE Std 610.12-1990)

“A disciplined process that consists of evaluating the
application (including its components) behavior,
performance, and robustness - usually against
expected criteria”

(Vincent Encontre – IBM)

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 72

Embedded Software Testing

 Why testing
● To check if product meets functional and

performance targets
● To ensure safety and regulatory compliance
● To ensure that production standards are met

 Errors in embedded software are critical
● We cannot restart an embedded system using “ctrl

+alt+del”
 If we don't test the system, the user will do it

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 73

Embedded Software Testing

 In 1979 an AT&T software bug knocked out all
long-distance phone service to Greece

switch(MessageType) {
case INCOMING_MESSAGE
 if (RemoteSwitch == NOT_IN_SERVICE) {

 if (LocalBuffer == EMPTY)
 SendInServiceMsg(3B);

 else
 break; /*Bad News!*/
 }
 ProcessIncomingMessage(); /*Statement skipped*/
 break;
//...
}

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 74

Embedded Software Testing

 Challenges in testing embedded systems
● Coexistence of various implementation paradigms
● Lack of clear design models
● A wide range of deployment architectures
● Limited direct interfaces
● Limited processing resources and spare memory
● Physical restrictions
● Many test tools don’t support embedded testing

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 75

Types of Testing

 Black box versus White box
● Black box testing assumes no knowledge of the

internal structure or design of the product
● White box testing has detailed knowledge of

internal structure and design
 Conformance versus Benchmarking

● Conformance testing checks that product meets its
specifications

● Benchmarking records/characterizes the level of
performance, capability, capacity, etc. that the
product has

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 76

Types of Testing

 Qualification versus Regression
● Qualification testing checks that the product first

meets a required objective
● Regression testing checks that it continues to meet

that objective after some change has been made to
the product

 Structured versus Ad-hoc testing
● Structured testing defines the precise details

related to the test before execution
● This usually follows a defined process from specifications

through to documented tests
● Ad-hoc testing uses a tester's experience to direct

the testing activities

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 77

Types of Testing

 Controlled versus Live environment testing
● Controlled environments allow the operations and

behavior of a target product to be exercised in
controlled and measured way
● This allows greater repeatability of testing

● Live (in-service) testing in a full operational
environment will always be needed to some degree
 (e.g. Beta-test, acceptance test)
● Inevitably, live testing is always less controlled and

predictable

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 78

Strategies of Testing

 Test scaffolds
● A software that provides the same entry points as

does the hardware-dependent code on the target
system, and it calls the same functions in the
hardware-independent code

● The host system is a much friendlier environment
for testing than the target

 Instruction set simulators
● Programs that run on host and mimic the target

microprocessor and memory
● Help to determine response and throughput and to

test your startup code

M
ic

ro
pr

oc
es

so
rs

 L
ab

or
at

or
y

March 2009 http://www.lisha.ufsc.br/ 79

Strategies of Testing

 Assert macro
● The assert macro tests assumptions in the code

and forces the running program to stop
immediately if one of those assumptions is false

 Laboratory tools
● Multimeters, oscilloscopes, logic analyzers, etc.

 Monitors
● A combination if software and hardware to give you

standard debugging capabilities (leds, displays ...)

