

#### **A/D Programming**

#### LISHA/UFSC

#### Prof. Dr. Antônio Augusto Fröhlich Fauze Valério Polpeta Lucas Francisco Wanner

http://www.lisha.ufsc.br/

March 2009

http://www.lisha.ufsc.br/



- Signal
  - Detectable transmitted energy that can be used to carry information
- Analog signals
  - Continuous nature
  - May take any value within a range
  - Information carried in (variations of) amplitude, frequency, or phase





**Microprocessors Laboratory** 

- Digital signals
  - Discrete nature
  - Finite number of possible states within a range
  - Information carried in discrete signal states





## Signals: Computers and the Real World

- The world is analog by nature
- Digital computers are... well, digital (and usually binary)!
- Interfacing analog signals to digital processors or microcontrollers is inevitable
  - Digital music and video
  - Digital telephony
  - Sensors and actuators



## Analog to Digital Conversion

The analog signal is sampled (i.e. measured) at a regular interval and each sample is quantized (i.e. converted to discrete numeric values) by a given value that approximates to the analog value.





- The analog signal is measured periodically
- Sampling rate
  - Number of samples that are taken on a time period (e.g. a second)





- Nyquist's theorem
  - "The sampling frequency must be greater than twice the highest frequency of the input signal in order to be able to reconstruct the original perfectly from the sampled version"
  - f Hz analog signal => 2 x f Hz sampling rate
  - Example: Hi-Fi audio
    - 20-20000 Hz signal => 40 kHz sampling frequency
- The sampling rate determines the speed of the conversion device
  - Fast devices cost more



## Irregular Sampling

- Sampling must be performed on a regular basis with exactly the same time between samples
  - Irregular sampling leads to conversion errors
    - Early or late sampling, jitter, delayed sampling





- The sampled signal is quantized (converted to discrete numeric values)
- The number of quantization steps determine how many discrete values a given sample may take





- The size of the quantization step determines the resolution of the conversion
  - Dependent on the number of bits used to represent the analog value and the analog signal's amplitude
- Example (analog signal range 0-1):
  - Size Resolution (Size of each quantization step)
  - 4 bit 0.06250000
  - 8 bit 0.00390625
  - 16 bit 0.00001525
- Higher resolution means more precise conversions
  - High resolution devices cost more



### Codification

- A digital value is associated with each quantized sample
- The maximum error in codification for a "perfect ADC" is +/- 1/2 LSB, where LSB is the size in volts of each quantization step





# **Digital Representation of Signals**

- PCM (Pulse Code Modulation)
  - Linear quantization step
  - Encoded value correspond to the quantized value
- DPCM
  - Encoded value is the difference between the current sample and the previous sample
  - May improve accuracy and resolution (e.g. having a 16-bit dynamic range without having to encode 16-bit samples)
- ADPCM
  - DPCM with a non-linear quantization step
  - May achieve better SNR (Signal/Noise Ratio)



## Analog / Digital Conversion Trade-offs

- Low sampling rates and small precision mean conversion errors
  - Lower cost
  - Enough for some applications





# Analog / Digital Conversion Tradeoffs

- High sampling rates and resolution mean better conversion
  - High cost
  - Higher bandwidth
  - Bandwidth example (in bytes/sec):
    - Remember: resolution = amplitude / size
    - Nyquist: sampling rate  $> 2 \times f$

|        |    | Sampling |       | Rate (Hz) |       |
|--------|----|----------|-------|-----------|-------|
|        |    | 1000     | 10000 | 20000     | 44100 |
|        | 4  | 500      | 5000  | 10000     | 22050 |
| Size   | 6  | 750      | 7500  | 15000     | 33075 |
| (Bytes | 8  | 1000     | 10000 | 20000     | 44100 |
| )      | 10 | 1250     | 12500 | 25000     | 55125 |
|        | 16 | 2000     | 20000 | 40000     | 88200 |



- One comparator associating each tension level with an output digital word
- A 2-bit Flash ADC needs 4
  - comparators, a 4-bit, 16, and so forth
- Very fast, but limited precision





#### Successive-approximation ADC

Uses a comparator to reject ranges of voltages, eventually settling on a final voltage range





**Microprocessors Laboratory** 

- Analog input signal connected to integrator
- Ramping voltage compared to ground
  1-bit ADC



 Comparator output latched through a D-type flip-flop clocked at a high frequency
Fed back to integrator



**Microprocessors Laboratory** 

#### Ramp-Compate ADC

For each sample, the ADC produces a saw-tooth signal that ramps up, then quickly falls to zero. When the ramp starts, a timer starts counting. When the ramp voltage  $V_{in}$ matches the input, the timer's value is recorded



March 2009



#### Analog / Digital Converters

Conversion Type

Typical Sampling Rate

**Typical Precision** 

Flash Successive Approx. Sigma-Delta Ramp-Compare 5Mhz – 500Mhz 50Khz – 5Mhz 10Khz – 10Mhz 1Hz – 1 Khz 4-8 bits 8-10 bits 10-16 bits 10-20 bits



## **ADC: Operational Parameters**

- Conversion range
  - Determines the amplitude of the analog signal
  - May be fixed or selectable
  - Usually determined by a GND and a Vref voltage
  - An analog value that is equal to GND will determine a 0 output in the ADC
  - A Vref analog value will determine a MAX output in the ADC
  - The larger the analog signal amplitude, the bigger the quantization step
- Differential and Single-ended conversion
  - The first measures the difference between signals
  - The second measures a single analog signal



### **ADC: Operational Parameters**

- Operation Frequency
  - Maximum is determined by the manufacturer
  - Internal or external clocks
  - Determines sampling rate
  - High frequencies imply on higher temperatures
- Bandwidth
  - Output speed
  - Sampling Rate = Frequency / Conversion Cycles
  - BW = Sampling rate / 2 (Nyquist)



- Absolute error
  - Maximum deviation between the actual ant the ideal ADC transfer functions. Composed by:
    - quantization error (+/- 1/2 LSB)
    - offset error
    - gain error
    - non-linearity
- Offset error
  - When a transition from 0 to 1 does not occur at an input value of ½ LSB
  - Offset error = Input voltage at the first 0 to 1 transition - Ideal transfer function value at first 0 to 1



#### ADC: Errors

- Gain error
  - Transfer function slope deviates from the ideal slope
- Non-linearity
  - Variation in the width of quantization steps
  - Maximum difference between the ideal width and each step width
- Calibration and compensation
  - Offset, gain and non-linearity errors may be measured and compensated
  - Important for high-precision devices



## **Digital / Analog Conversion**

- Translates a binary input code to an analog output voltage
- Similar principle to ADCs
- Different conversion speeds and input rates
  - Expensive devices x glitches
- Examples
  - Pulse Width Modulator (PWM)
  - Delta-Sigma
  - R-2R Ladder



#### ADCs and DACs in Embedded Systems

#### Devices

- External
  - Parallel (GPIO)
  - Serial (SPI, I2C)
  - Myriad of choices, Requires additional circuitry
- Internal (MCU-embedded)
  - Register-controlled
  - Limited choices, Easy to interface
- Software ADCs
  - Built with an internal analog comparator and some additional circuitry
  - Limited precision/sampling rate, cheap



#### ADC Case Study: Analog Devices AD9260

- 16-bit, Single-channel, up to 2.5 Mhz ADC
- General Purpose, medium/high precision device
- Parallel output
- Additional pins for signals
  - Data available, Overflow
- Configuration
  - Sampling rate (via Input Clock)
  - Conversion range (via Analog Reference Inputs)



#### ADC Case Study: AVR ATMega ADC

#### 10-bit, 8-channel, up to 1 Mhz ADC

- Conversion
  - 0.5 LSB integral non-linearity, ±2 LSB absolute accuracy
  - •13 260 µs conversion time
- 2 differential input channels
  - Optional gain of 10x and 200x
- 0 VCC ADC input voltage range
  - Selectable 2.56V ADC reference voltage
- Operation
  - Analog inputs shared with GPIO ports
  - Clock prescaling (sampling rate)
  - Optional left adjustment for ADC result readout
  - Free running or single conversion modes
    - Interrupt on completion