A/D Programming

LISTA/UFSC

Prof. Dr. Antônio Augusto Fröhlich
Fauze Valério Polpeta
Lucas Francisco Wanner

http://www.lisha.ufsc.br/

March 2009
Signals

- Signal
 - Detectable transmitted energy that can be used to carry information

- Analog signals
 - Continuous nature
 - May take any value within a range
 - Information carried in (variations of) amplitude, frequency, or phase
Signals

- Digital signals
 - Discrete nature
 - Finite number of possible states within a range
 - Information carried in discrete signal states
Signals: Computers and the Real World

- The world is analog by nature
- Digital computers are... well, digital (and usually binary)!
- Interfacing analog signals to digital processors or microcontrollers is inevitable
 - Digital music and video
 - Digital telephony
 - Sensors and actuators
Analog to Digital Conversion

- The analog signal is sampled (i.e. measured) at a regular interval and each sample is quantized (i.e. converted to discrete numeric values) by a given value that approximates to the analog value.
Sampling

- The analog signal is measured periodically
- Sampling rate
 - Number of samples that are taken on a time period (e.g. a second)
Sampling

- Nyquist's theorem
 - “The sampling frequency must be greater than twice the highest frequency of the input signal in order to be able to reconstruct the original perfectly from the sampled version”
 - f Hz analog signal => 2 x f Hz sampling rate
 - Example: Hi-Fi audio
 - 20-20000 Hz signal => 40 kHz sampling frequency

- The sampling rate determines the speed of the conversion device
 - Fast devices cost more
Irregular Sampling

- Sampling must be performed on a regular basis with exactly the same time between samples
 - Irregular sampling leads to conversion errors
 - Early or late sampling, jitter, delayed sampling
Quantization

- The sampled signal is quantized (converted to discrete numeric values)
- The number of quantization steps determine how many discrete values a given sample may take
Quantization

- The size of the quantization step determines the resolution of the conversion
 - Dependent on the number of bits used to represent the analog value and the analog signal's amplitude

- Example (analog signal range 0-1):

<table>
<thead>
<tr>
<th>Size</th>
<th>Resolution (Size of each quantization step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bit</td>
<td>0.06250000</td>
</tr>
<tr>
<td>8 bit</td>
<td>0.00390625</td>
</tr>
<tr>
<td>16 bit</td>
<td>0.00001525</td>
</tr>
</tbody>
</table>

- Higher resolution means more precise conversions
 - High resolution devices cost more
Codification

- A digital value is associated with each quantized sample
- The maximum error in codification for a “perfect ADC” is +/- 1/2 LSB, where LSB is the size in volts of each quantization step
Digital Representation of Signals

- **PCM (Pulse Code Modulation)**
 - Linear quantization step
 - Encoded value correspond to the quantized value

- **DPCM**
 - Encoded value is the difference between the current sample and the previous sample
 - May improve accuracy and resolution (e.g. having a 16-bit dynamic range without having to encode 16-bit samples)

- **ADPCM**
 - DPCM with a non-linear quantization step
 - May achieve better SNR (Signal/Noise Ratio)
Analog / Digital Conversion Trade-offs

- Low sampling rates and small precision mean conversion errors
 - Lower cost
 - Enough for some applications
Analog / Digital Conversion Tradeoffs

- High sampling rates and resolution mean better conversion
 - High cost
 - Higher bandwidth
 - Bandwidth example (in bytes/sec):
 - Remember: resolution = amplitude / size
 - Nyquist: sampling rate > 2 x f

<table>
<thead>
<tr>
<th>Sampling Rate (Hz)</th>
<th>1000</th>
<th>10000</th>
<th>20000</th>
<th>44100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Bytes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>5000</td>
<td>10000</td>
<td>22050</td>
</tr>
<tr>
<td>6</td>
<td>750</td>
<td>7500</td>
<td>15000</td>
<td>33075</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>10000</td>
<td>20000</td>
<td>44100</td>
</tr>
<tr>
<td>10</td>
<td>1250</td>
<td>12500</td>
<td>25000</td>
<td>55125</td>
</tr>
<tr>
<td>16</td>
<td>2000</td>
<td>20000</td>
<td>40000</td>
<td>88200</td>
</tr>
</tbody>
</table>
Flash ADC

- One comparator associating each tension level with an output digital word
- A 2-bit Flash ADC needs 4 comparators, a 4-bit, 16, and so forth
- Very fast, but limited precision
Successive-approximation ADC

- Uses a comparator to reject ranges of voltages, eventually settling on a final voltage range.
Delta-Sigma ADC

- Analog input signal connected to integrator
- Ramping voltage compared to ground
 - 1-bit ADC
- Comparator output latched through a D-type flip-flop clocked at a high frequency
- Fed back to integrator
Ramp-Compate ADC

- For each sample, the ADC produces a saw-tooth signal that ramps up, then quickly falls to zero. When the ramp starts, a timer starts counting. When the ramp voltage matches the input, the timer's value is recorded.
Analog / Digital Converters

<table>
<thead>
<tr>
<th>Conversion Type</th>
<th>Typical Sampling Rate</th>
<th>Typical Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash</td>
<td>5Mhz – 500Mhz</td>
<td>4-8 bits</td>
</tr>
<tr>
<td>Successive Approx.</td>
<td>50Khz – 5Mhz</td>
<td>8-10 bits</td>
</tr>
<tr>
<td>Sigma-Delta</td>
<td>10Khz – 10Mhz</td>
<td>10-16 bits</td>
</tr>
<tr>
<td>Ramp-Compare</td>
<td>1Hz – 1 Khz</td>
<td>10-20 bits</td>
</tr>
</tbody>
</table>
ADC: Operational Parameters

- **Conversion range**
 - Determines the amplitude of the analog signal
 - May be fixed or selectable
 - Usually determined by a GND and a Vref voltage
 - An analog value that is equal to GND will determine a 0 output in the ADC
 - A Vref analog value will determine a MAX output in the ADC
 - The larger the analog signal amplitude, the bigger the quantization step

- **Differential and Single-ended conversion**
 - The first measures the difference between signals
 - The second measures a single analog signal
ADC: Operational Parameters

- **Operation Frequency**
 - Maximum is determined by the manufacturer
 - Internal or external clocks
 - Determines sampling rate
 - High frequencies imply on higher temperatures

- **Bandwidth**
 - Output speed
 - Sampling Rate = Frequency / Conversion Cycles
 - $BW = \frac{\text{Sampling rate}}{2}$ (Nyquist)
ADC: Errors

- **Absolute error**
 - Maximum deviation between the actual and the ideal ADC transfer functions. Composed by:
 - quantization error (+/- ½ LSB)
 - offset error
 - gain error
 - non-linearity

- **Offset error**
 - When a transition from 0 to 1 does not occur at an input value of ½ LSB
 - Offset error = Input voltage at the first 0 to 1 transition - Ideal transfer function value at first 0 to 1
ADC: Errors

- Gain error
 - Transfer function slope deviates from the ideal slope
- Non-linearity
 - Variation in the width of quantization steps
 - Maximum difference between the ideal width and each step width
- Calibration and compensation
 - Offset, gain and non-linearity errors may be measured and compensated
 - Important for high-precision devices
Digital / Analog Conversion

- Translates a binary input code to an analog output voltage
- Similar principle to ADCs
- Different conversion speeds and input rates
 - Expensive devices x glitches
- Examples
 - Pulse Width Modulator (PWM)
 - Delta-Sigma
 - R-2R Ladder
ADCs and DACs in Embedded Systems

- Devices
 - External
 - Parallel (GPIO)
 - Serial (SPI, I2C)
 - Myriad of choices, Requires additional circuitry
 - Internal (MCU-embedded)
 - Register-controlled
 - Limited choices, Easy to interface
 - Software ADCs
 - Built with an internal analog comparator and some additional circuitry
 - Limited precision/sampling rate, cheap
ADC Case Study: Analog Devices AD9260

- 16-bit, Single-channel, up to 2.5 Mhz ADC
- General Purpose, medium/high precision device
- Parallel output
- Additional pins for signals
 - Data available, Overflow
- Configuration
 - Sampling rate (via Input Clock)
 - Conversion range (via Analog Reference Inputs)
ADC Case Study: AVR ATmega ADC

- 10-bit, 8-channel, up to 1 Mhz ADC
 - Conversion
 - 0.5 LSB integral non-linearity, ±2 LSB absolute accuracy
 - 13 - 260 μs conversion time
 - 2 differential input channels
 - Optional gain of 10x and 200x
 - 0 - VCC ADC input voltage range
 - Selectable 2.56V ADC reference voltage

- Operation
 - Analog inputs shared with GPIO ports
 - Clock prescaling (sampling rate)
 - Optional left adjustment for ADC result readout
 - Free running or single conversion modes
 - Interrupt on completion