

D/A Programming

LISHA/UFSC

Prof. Dr. Antônio Augusto Fröhlich João Gabriel Reis Sérgio Soares

http://www.lisha.ufsc.br/

September 2014

http://www.lisha.ufsc.br/

Overview

A DAC (digital-toanalog converter) is a device for converting a digital code to an analog signal (current, voltage or electric charge)

DAC: Operational Parameters

- Conversion range
 - Determines the amplitude of the analog signal
- Differential and Single-ended conversion
- Operation frequency
 - Determines sampling rate
- Bandwidth
 - Bandwidth = Sampling rate / 2
- Settling Time
 - Time in which the DAC output settles at the desired value
- Resolution
 - Vref / 2^n

DAC: Operational Parameters

- Accuracy
 - Worst deviation from nominal line
- Linearity
 - Worst deviation from line joining end points
- Monotonicity
 - The analog output always increases as the DAC-code input increases

Pulse Width Modulator (PWM) DAC

- Simple but limited by the PWM frequency
- The PWM output is filtered by a low pass filter
- The duty cycle defines the output voltage
- Often used for electric motor speed control

- Multiple clock cycles to generate an output by approximation
- High resolution DACs (greater than 16 bits) are Delta-sigma due to its linearity and low cost

R-2R Ladder Network DAC

- The n input bits are weighted by the R-2R network and each ones gives its contribution to Vout
- 2^n possible Vout values
- Inexpensive and easy to manufacture
- Slower conversion rate

Microprocessors Laboratory

Reconstruction Filter

- DAC outputs a sequence of constant values which causes multiple harmonics above the Nyquist frequency
- They can be removed with a low pass filter acting as a reconstruction filter

March 2009