

Timers and Counters

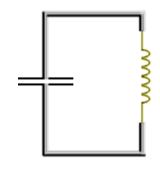
LISHA/UFSC

Prof. Dr. Antônio Augusto Fröhlich Fauze Valério Polpeta Lucas Francisco Wanner

http://www.lisha.ufsc.br/~guto

March 2009

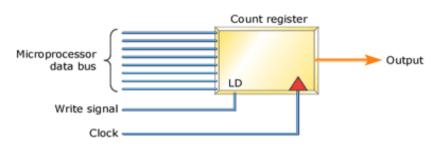
http://www.lisha.ufsc.br/


Timers and Counters

- Devices to keep track of recurring events
 - Time
 - Elapsed time
 - Delays
 - Time-outs
 - Scheduling
- Types of timers in embedded systems
 - Oscillators
 - Counters
 - Real-time clock
 - Watchdog

Oscillators

- Basic structure
 - A charged capacitor connected to an inductor
 - The capacitor starts to discharge through the inductor


- At the same time, the inductor creates a magnetic field
- Once the capacitor discharges, the inductor will try to keep the current in the circuit, so it will charge up the other plate of the capacitor
- Once the inductor's field collapses, the capacitor has been recharged (but with the opposite polarity), so it discharges again through the inductor

- A clock generator is a kind of oscillator in which the frequency is controlled by a piezoelectric crystal
- The clock of a timer can be shared with or scaled from the processor's clock
 - Clock divisor (e.g. counter)
 - Clock multiplier (e.g. pll)

- Basic structure
 - Loadable count register
 - Input clock signal
 - Triggers count operations
 - Output signal
 - Indicate counting events
- Operation

- Counter is loaded with an initial value
- Each subsequent clock transition increments (decrements) the counter
- When the counter overflows (zeroes), the output signal is asserted
 - Can be driven to an interrupt request line or an I/O port for polling

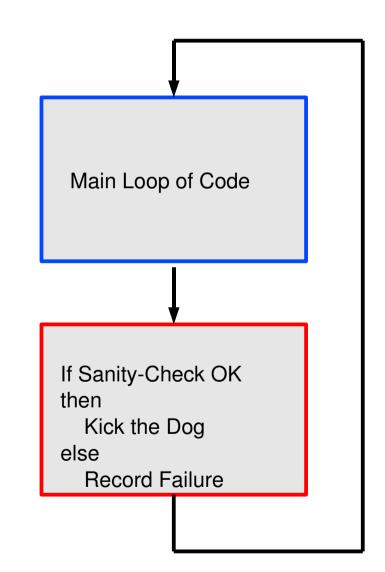
Timer Programming

- Transition trigger
 - Level, rising edge, falling edge
- Initial values
 - Setable, reloadable
- Precision of count registers (bits)
- Resolution (in hertz)
- Input frequency
 - Divisors
- Operations
 - Overflow, compare match, input capture

- A real-time clock (RTC) is a battery-powered counter that keeps track of time
- Example: Motorola MC-146818 (PC RTC)
 - Keeps track of time and date
 - Different registers for second, minute, hour, day, etc.
 - ~1Mhz resolution
 - BCD or binary format
 - Interrupt generation
 - Like a timer on clock and counter transitions
 - Like an alarm with a predefined time

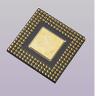
Hardware

- A counter with the output signal wired to the circuit's reset
- Initiated with a certain value that is constantly decremented
- Must be reinitialized before reaching zero
- Software
 - Sets the count to its original value often enough to ensure that it never reaches zero
 - If it does reach zero, it is assumed that the software has failed in some manner and the WDT "bites" the processor, forcing the system to reinitialize itself


Watchdog Timer Use Cases

- In electrically noisy environments, a power glitch may corrupt the program counter, stack pointer, or data in RAM
 - The software would crash almost immediately, even if the code is completely bug free
- Bugs in software can also cause the system to hang, if they lead to an infinite loop, a lost pointer, or a dead-lock condition
- Periodically "kicking the dog" ensures that the software is running properly

Watchdog Timer: "kicking the dog"


- Kick the dog at the end of every main program loop iteration
- Kick the dog only after the system has passed sanity checks
 - Stack depth
 - Number of buffers allocated
 - Status of some mechanical component
 - Status of system flags ...

Case Study: AVR General Purpose Timers

- 8- and 16-bit timers
 - Input frequency prescaled from the system clock
- Watchdog Timer
 - Separate, prescalable 1 Mhz oscillator
- Timer events
 - Overflow
 - Compare match
 - Input capture
- Interrupt-based event notification
 - Overflow, compare and input capture interrupts
 - Controlled by a timer interrupt mask register

Case Study: AT90S Timers Operation

- Timer input clock configured by registers
 - Divided from the system clock
- 8-bit timer (Timer0)
 - Only Overflow Interrupt
- 16-bit timer (Timer1)
 - Overflow, Compare and Input Capture Interrupts
- Timer value available and settable through registers