Introduction to Distributed Systems

- **Stand-alone computing systems**
 - Independent computers
 - Independent tasks

- **Networked computing systems**
 - Interconnected independent computers
 - Processes of independent tasks can communicate

- **Distributed computing systems**
 - Loosely-coupled computers
 - Processes of individual tasks transparently share resources

- **Parallel computing systems**
 - Tightly-coupled processing units
 - Several processes cooperate on a single task
A New Perspective

Computing systems are evolving to a merge
- Embedded systems were once stand-alone
 - Now modern limousines are distributed systems on wheels
- Workstations were once networked systems
 - Now they use parallel hardware (processors and SMPs)
 - Now transparency is being increased (Gnutella)
- Distributed systems were once local
 - Now the web is the computer (SETI@Home)
- Parallel systems were once built on multiprocessors
 - Now clusters are made of off-the-shelf computers with high-speed buses and networks

Operating systems are being challenge
- Light enough to support a stand-alone system
- Powerful enough to support a distributed system
Distributed Systems

- Set of loosely coupled computers interconnected by a network
- Each computer has its own local resources plus remote resources from other computers in the set
- Processes on a distributed system access resources independently of whether they are local or remote (location transparency)

Process models
- Client-Server
 - Server has a resource that is used by the client
- Peer-to-Peer
 - Both partner processes share some of their resources
Motivation

- **Resource sharing**
 - Remote file sharing, printing, access to special devices (scanner, CD writer, etc)
 - Distributed databases

- **Computation speedup**
 - Tasks can be partitioned and distributed

- **Reliability**
 - The failure of a node does not necessarily disrupts the system

- **Scalability**
 - New nodes can be aggregated to the system on demand

- **Pitfalls:** complexity and security
Transparency

- Location transparency
 - Local and remote objects look just the same
 - No need to specify location
- Migration transparency
 - Objects change location, their names are preserved
- Replication transparency
 - Objects can be automatically replicated (consistency)
- Concurrency transparency
 - Objects can be concurrently manipulated without explicit synchronization
- Parallelism transparency
 - Automatic parallelization
Remote Procedure Call (RPC)