Localization for Wireless Sensor Networks

Rafael Pereira Pires

rafaelpp@lisha.ufsc.br http://www.lisha.ufsc.br/~rafaelpp

April 10, 2007

Localization Techniques

- Range-free Methods
- Depends on a good geographical position of the anchor nodes
- Anchor Nodes
- Nodes that are aware of their positions
- Range Measurements
- Method to estimate the distance or angle between a pair of nodes

Range-free Methods

- Centroid
- DV-HOP

$$
d_{A B}=60 m=>d_{A X}=40 m
$$

$$
(x, y)=\left(\frac{x 1+\ldots+x n, y 1+\ldots+y n}{n}\right)
$$

Range Measurements

- ToA (Time of Arrival)
- Requires accurate clocks
- TDoA (Time Difference of Arrival)
- Requires additional hardware (ultra-sound device)
- AoA (Angle of Arrival)
- Requires additional hardware (for angle estimation)
- RSSI (Received Signal Strength Indication) - No additional hardware
- Imprecise

Position Calculation

- Triangulation

- Trilateration
- Multilateration

Triangulation

- Angle information is provided.
- Coordinates can be defined through trigonometry rules (law of sines, law of cosines, trigonometric functions).

Trilateration

$$
\left\{\begin{array}{l}
d_{A x}{ }^{2}=\left(x-x_{A}\right)^{2}+\left(y-y_{A}\right)^{2} \\
d_{\mathrm{Bx}}{ }^{2}=\left(x-x_{\mathrm{B}}\right)^{2}+\left(y-y_{\mathrm{E}}\right)^{2} \\
d_{c x}=\left(x-x_{\mathrm{C}}\right)^{2}+\left(y-y_{\mathrm{C}}\right)^{2}
\end{array}\right.
$$

Translation and Rotation

Approximation

Software/Hardware Integration

Residue $=\sum_{i=1}^{n}\left|d_{i x}-d_{x}\right|$

Where iterates through anchors (and n is the total number)

Min-Max

Software/Hardware Integration

Multilateration

$$
\left\{\begin{array}{c}
\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)^{2}=d_{1}^{2} \\
\vdots \\
\left(x_{n}-x\right)^{2}+\left(y_{n}-y\right)^{2}=d_{n}^{2}
\end{array}\right.
$$

The system can be linearized by subtracting the last equation from the first $n-1$ equations. Reordering the terms gives a proper system of linear equations in the form of $A x=b$, where:

$$
A=\left[\begin{array}{cc}
2\left(x_{1}-x_{n}\right) & 2\left(y_{1}-y_{n}\right) \\
\vdots & \vdots \\
2\left(x_{n-1}-x_{n}\right) & 2\left(y_{n-1}-y_{n}\right)
\end{array}\right] \begin{aligned}
& \text { Using a standard least-squares } \\
& \text { approach: }
\end{aligned}
$$

$$
b=\left[\begin{array}{c}
x_{1}^{2}-x_{n}^{2}+y_{1}^{2}-y_{n}^{2}+d_{n}^{2}-d_{1}^{2} \\
\vdots \\
x_{n-1}^{2}-x_{n}^{2}+y_{n-1}^{2}-y_{n}^{2}+d_{n}^{2}-d_{n-1}^{2}
\end{array}\right]
$$

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

Square-root Approximation

- Newton-Raphson method to find roots of functions

- Which function gives the square-root of a number?

RSSI Fluctuations

Software/Hardware Integration

HECOPS Calibration

