

Localization for Wireless Sensor Networks

Rafael Pereira Pires

rafaelpp@lisha.ufsc.br http://www.lisha.ufsc.br/~rafaelpp

April 10, 2007

April 10, 2007 (http://www.lisha.ufsc.br)

Localization Techniques

- Range-free Methods
 - Depends on a good geographical position of the anchor nodes
- Anchor Nodes
 - Nodes that are aware of their positions
- Range Measurements
 - Method to estimate the distance or angle between a pair of nodes

Range-free Methods

Centroid

$$(x,y) = \left(\frac{x1+...+xn}{n}, \frac{y1+...+yn}{n}\right)$$

DV-HOP

$$d_{AB} = 60m => d_{AX} = 40m$$

Range Measurements

- ToA (Time of Arrival)
 - Requires accurate clocks
- TDoA (Time Difference of Arrival)
 - Requires additional hardware (ultra-sound device)
- AoA (Angle of Arrival)
 - Requires additional hardware (for angle estimation)
- RSSI (Received Signal Strength Indication)
 - No additional hardware
 - Imprecise

Position Calculation

- Triangulation
- Trilateration
- Multilateration

April 10, 2007 (http://www.lisha.ufsc.br) 5

Triangulation

- Angle information is provided.
 - Coordinates can be defined through trigonometry rules (law of sines, law of cosines, trigonometric functions).

$$m = tg \alpha$$
 $n = tg \beta$

$$\begin{cases} y = m (x - x_A) + y_A \\ y = n (x - x_B) + y_B \end{cases}$$

Trilateration

Translation and Rotation

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$

$$\sin \theta = (y_B - y_A) / d_{AB}$$
$$\cos \theta = (x_B - x_A) / d_{AB}$$

8

April 10, 2007 (http://www.lisha.ufsc.br)

Approximation

Residue=
$$\sum_{i=1}^{n} |d_{ix}-d_{x}|$$

Where i iterates through anchors (and n is the total number)

Min-Max

10

Multilateration

$$\begin{cases} (x_1 - x)^2 + (y_1 - y)^2 = d_1^2 \\ \vdots \\ (x_n - x)^2 + (y_n - y)^2 = d_n^2 \end{cases}$$

The system can be linearized by subtracting the last equation from the first *n-1* equations. Reordering the terms gives a proper system of linear equations in the form of Ax = b, where:

$$A = \begin{bmatrix} 2(x_1 - x_n) & 2(y_1 - y_n) \\ \vdots & \vdots \\ 2(x_{n-1} - x_n) & 2(y_{n-1} - y_n) \end{bmatrix}$$
 Using a standard least-squares approach:

$$b = \begin{bmatrix} x_1^2 - x_n^2 + y_1^2 - y_n^2 + d_n^2 - d_1^2 \\ \vdots \\ x_{n-1}^2 - x_n^2 + y_{n-1}^2 - y_n^2 + d_n^2 - d_{n-1}^2 \end{bmatrix}$$

$$\hat{x} = (A^T A)^{-1} A^T b$$

Square-root Approximation

Newton-Raphson method to find roots of functions

Which function gives the square-root of a number?

RSSI Fluctuations

HECOPS Calibration

$$d_{AX} = deviation_{AB} . RSSI_{AX}$$