
FEDERAL UNIVERSITY OF SANTA CATARINA

The EPOS System Supporting Wireless Sensor

Networks Applications

Lucas Francisco Wanner

FEDERAL UNIVERSITY OF SANTA CATARINA

COMPUTER SCIENCES DEPARTMENT

B.SC PROGRAM IN COMPUTER SCIENCES

The EPOS System Supporting Wireless Sensor

Networks Applications

Lucas Francisco Wanner

Prof. Dr. Antônio Augusto M. Fröhlich

Advisor

Examinors:

Prof. Dr. Rômulo Silva de Oliveira

Fauze Valerio Polpeta, B.Sc.

Keywords: Wireless Sensor Networks, Application Oriented Operating Systems

Florianópolis, February, 2004.

To my grandparents,

José Tarćısio Hoff (in memorian)

Reinilda von Frühauf

Arlindo Gregório Wanner

Maria Nair Schmidt

iii

Acknowledgements

I would like to take this opportunity to acknowledge all the people that supported

me through all these years here at UFSC, and particularly during the execution of this

research:

• Professor Antônio Augusto, for support, dedication and commitment beyond my

(and I believe, any undergraduate student’s) wildest expectations. More than an

advisor, he has become a role model to me, and an example to follow.

• Fauze Valerio Polpeta, along with all my colleagues from the EPOS group at LISHA,

for their support and invaluable technical advice.

• Professors Luis Fernando Friedrich and Leandro José Komosinski, for their advice,

friendship and support.

• My colleagues and friends at PET and G8, for their friendship and many long

conversations about life, the universe and everything. . .

• My mother, Mena, and my sister, Joice for their love and support throughout all

these years. I wouldn’t be here if it wasn’t for them.

• My beloved Gabriella, for showing me the meaning of love and happiness.

iv

Contents

List of Tables p. vii

List of Figures p. viii

Resumo p. ix

Abstract p. x

1 Introduction p. 1

1.1 Presentation Overview . p. 1

2 Wireless Sensor Networks p. 3

2.1 Wireless Sensor Nodes . p. 3

2.1.1 Mica Motes . p. 5

2.1.1.1 Hardware Organization p. 5

2.1.1.2 Sensor Boards . p. 7

2.1.1.3 Programming . p. 8

2.1.1.4 Availability . p. 9

2.1.1.5 Future Development p. 9

2.1.2 Related Work . p. 10

2.2 Communication in Wireless Sensor Networks p. 10

2.2.1 Data Link Layer . p. 11

2.2.1.1 Listening Mechanism p. 12

2.2.1.2 Contention Based Mechanism p. 12

v

2.2.2 Routing . p. 12

2.2.2.1 Design Issues . p. 13

2.2.2.2 Data-centric Protocols p. 14

2.2.2.3 Hierarchical Protocols p. 14

2.3 Sensor Network Applications . p. 15

2.3.1 Military applications . p. 15

2.3.2 Environmental applications . p. 16

2.3.2.1 Forest fire detection p. 16

2.3.2.2 Habitat Monitoring . p. 17

2.3.3 Health applications . p. 17

2.3.4 Commercial applications . p. 18

3 The AVR Architecture p. 19

3.1 Architectural Overview . p. 19

3.1.1 General Purpuse Registers . p. 19

3.1.2 I/O Registers . p. 20

3.1.2.1 Status Register . p. 21

3.1.2.2 Stack Pointer . p. 21

3.1.3 Data Memory . p. 21

3.1.4 Program Memory . p. 24

3.1.4.1 Self-Programming . p. 24

3.1.5 Addressing Modes . p. 25

3.1.5.1 Register Direct – Single Register p. 25

3.1.5.2 Register Direct – Two Registers p. 26

3.1.5.3 I/O Direct . p. 26

3.1.5.4 Data Direct . p. 27

3.1.5.5 Data Indirect with Displacement p. 27

vi

3.1.5.6 Data Indirect . p. 28

3.1.5.7 Constant Addressing Using LPM p. 29

3.1.5.8 Indirect Program Addressing p. 29

3.1.5.9 Relative Program Addressing p. 29

3.2 Timers . p. 30

3.2.1 Timer Events . p. 30

3.2.2 Watchdog Timer . p. 31

3.3 Serial Peripheral Interface . p. 31

3.4 UART . p. 32

3.5 GPIO . p. 33

3.6 Sleep Modes . p. 33

4 EPOS initialization in the AVR p. 34

4.1 EPOS System Architecture . p. 34

4.1.1 System Abstractions . p. 34

4.2 EPOS Initialization . p. 35

4.2.1 The Setup Utility for the AVR p. 35

4.2.2 The Init Utility . p. 36

4.2.3 Overview of EPOS initialization p. 36

4.2.4 Considerations for the AVR Architecture p. 37

5 Conclusions and Further Research p. 38

References p. 39

Annex A -- Object Code for the Generated EPOS Image p. 42

Annex B -- Article p. 48

vii

List of Tables

1 Mica Motes Components . p. 4

2 AVR I/O Registers . p. 23

viii

List of Figures

1 The Mica2 Sensor Node . p. 5

2 Mote Architecture General Organization p. 6

3 Mica2 General Schematic . p. 7

4 The Mica Sensorboard . p. 8

5 Mote Kit from Crossbow . p. 9

6 The Spec Mote . p. 10

7 Deployed Firebug Mote . p. 16

8 Motes deployed on Great Duck Island p. 17

9 Block Diagram of the AVR Architecture [9] p. 20

10 AVR Memory Maps [9] . p. 22

11 Self-Programmable AVR Program Memory Organization [10] p. 25

12 Multiple slave SPI implementation [25] p. 32

13 EPOS Families of Abstractions [14] . p. 35

14 Overview of EPOS initialization [14] p. 36

ix

Resumo

O micro-sensoreamento pervasivo através de Redes de Sensores sem Fios está revolu-
cionando a maneira como compreendemos e gerenciamos sistemas f́ısicos complexos desde
habitats de animais até plantas industriais. A possibilidade de monitoramento f́ısico de-
talhado em virtualmente qualquer ambiente oferece oportunidades para quase todas as
disciplinas cient́ıficas e é um campo de pesquisa aberto.

Compostas por milhares de pequenos dispositivos com recursos muito limitados, redes
de sensores estão sujeitas a novos problemas e restrições de sistema. Enquanto o hardware
de Redes de Sensores sem Fios está evoluindo para plataformas estáveis e comercialmente
dispońıveis, a fronteira Hardware/Software é um tópico de pesquisa aberto. Sistemas Op-
eracionais para Redes de Sensores devem implementar abstrações que tratem de sensores
analógicos e digitais, devem prover uma pilha de protocolos para comunicação e fazer
uso eficiente da capacidade limitada de energia do sistema. Ao mesmo tempo, devem
prover uma interface de sistema e sistema de configuração simples para o programador
da aplicação, que provavelmente não será um especialista em Sistemas Operacionais nem
terá grande conhecimento do design do sistema da Rede de Sensores.

O Sistema Operacional EPOS tem como objetivo dar a cada aplicação dedicada su-
porte de runtime adequado sem ter que desenvolver um novo sistema para cada aplicação
e sem necessitar que o programador de aplicação passe por complexos processos de con-
figuração, usando a técnica de engenharia de domı́nio Design de Sistema Orientado à
Aplicação para produzir um sistema operacional baseado em componentes que pode ser
automaticamente configurado de acordo com as necessidade de aplicações espećıficas.

Este relatório apresenta uma visão geral de tecnologias e arquitetura de sistema de
Redes de Sensores e apresenta um porte do sistema EPOS para a arquitetura AVR, usada
em várias plataformas de Redes de Sensores sem Fios.

x

Abstract

Pervasing micro-sensing through Wireless Sensor Networks is revolutionizing the way
we understand and manage complex physical systems from animal habitats to industrial
plants. The possibility of detailed physical monitoring in virtually every possible envi-
ronment offers opportunities for almost every scientific discipline, and is a field of open
research.

Composed by thousands of small devices with very limited resources, sensor networks
are subject to novel system problems and constraints. While Wireless Sensor Networks
(WSN) hardware designs are evolving into stable, commercially available platforms, the
Hardware/Software boundary in WSN is a topic of open research. Operating Systems for
WSN must implement abstractions to interface with digital and analog sensors, provide
a communication stack, and make efficient use of the system’s limited energy resources.
Meanwhile, they must also provide a simple system interface and configuration system
for the application programmer, who most likely will not be an operating systems expert
nor have great knowledge of the WSN system design.

The EPOS operating system aims to give each dedicated application adequate run-
time support without having to design a new system for each application and without
requiring application programmers to undergo complicated configuration procedures, us-
ing the Application Oriented System Design domain engineering technique to produce a
component-based operating system that can be automatically tailored according to the
needs of particular applications.

This report presents an overview of Sensor Network technologies and system archi-
tecture and a port of the EPOS system for the AVR microcontroller architecture, used in
many Wireless Sensor Networks research platforms.

1

1 Introduction

Wireless Sensor Networks is an emerging technology that enables information gather-

ing in several different scenarios ranging from wildlife monitoring to industrial and military

applications. A Wireless Sensor Network consists of groups of sensor nodes using wireless

links to perform distributed sensing tasks [36]. These nodes are typically provided with

an embedded microprocessor and a very small amount of memory.

This embedded system must interface with digital and analog sensors, provide a com-

munication stack and make efficient use of it’s usually limited energy resources.

While Wireless Sensor Networks (WSN) hardware designs are evolving into stable,

commercially available platforms, the Hardware/Software boundary in WSN is a topic of

open research. When available, the Operating Systems for WSN are, according to their

own creators, too simplistic and unsuited for non-expert programmers [28].

This report presents the first port of the EPOS1 system to the AVR family of micro-

controllers, an 8-bit Harvard Architecture widely used in embedded systems and Wireless

Sensor Nodes.

The EPOS system aims to give each dedicated application adequate runtime support

without having to design a new system for each application and without requiring applica-

tion programmers to undergo complicated configuration procedures, using the Application

Oriented System Design [14] domain engineering technique to produce a component-based

operating system that can be automatically tailored according to the needs of particular

applications.

1.1 Presentation Overview

Chapter 2 presents an overview of Wireless Sensor Network technologies, hardware,

communcation models and applications.

1EPOS: Embedded Parallel Operating System

2

Chapter 3 presents the AVR microcontroller architecture, widely used in Wireless Sen-

sor Network hardware designs.

Chapter 4 presents the EPOS system and an implementation of it’s initialization system

to the AVR platform.

Chapter 5 presents the conclusions of this report, and suggests future related research

projects.

3

2 Wireless Sensor Networks

In the past few years the advances in miniaturization and low-cost, low-power design

have led to extensive research in large-scale networks of small, wireless, low-power, unat-

tended microsensors [24, 3]. These microsensors are equipped with a sensor module (e.g.

acoustic, light, temperature, magnetic, image sensor), capable of sensing some quantity

about the environment, a digital processor for processing the signals from the sensors

and performing operating system, application and network functions, a radio module for

communication and a battery to provide energy for operation [20]. Each sensor obtains

a “view” of the environment, and sends the view data to a distant base-station, through

which an end-user can access the information.

Wireless sensor networks enable the monitoring of a variety of possibly inhospitable

environments that include home security, machine-failure diagnosis, chemical/biological

detection, medical and wild habitat monitoring [20, 29]. These applications require re-

liable, accurate, fault-proof and possibly real-time monitoring. Meanwhile, the low en-

ergy and processing capacities of the nodes require efficient and energy-aware operation.

Many researchers envision driving the networked sensor down to microscopic scale, creat-

ing smart environments and devices, powered by ambient energy [26] and used in many

smart space scenarios. While it is acknowledged that energy consumption restrictions will

not likely allow great processing power in this “smart dust”, a wireless grid interface with

more powerful computers could easily fulfill connectivity, storage and processing needs in

the network nodes.

This chapter describes the basic microsensor node architecture, the communication

principles of Wireless Sensor Networks (WSN), and WSN applications.

2.1 Wireless Sensor Nodes

In a Wireless Sensor Network, a Sensor Node is responsible for the lowest level of the

sensing application. Several nodes are placed in areas of interrest, and each sensor node

4

Mote Type Renee Mica Mica2 Mica2Dot

Microcontroller
Type Atmega163 Atmega128 Atmega128 Atmega128
CPU Clock (Mhz) 4 4 8 4
Program Memory (KB) 16 128 128 128
RAM (KB) 1 4 4 4

Non-volatile Storage
Size (KB) 32 512

Radio Communication
Radio RFM TR1000 Chipcom CC1000
Frequency 916 916 / 433
Transmit Power Control Programmable resistor

potentiometer.
Programmable via
CC1000 registers.

Encoding SecDed (Software) Manchester (Hardware)

Table 1: Mica Motes Components

collects data from it’s immediate surroundings. The collected data is then pre-processed

in the node, and forwarded to a base station through the network formed with all the

deployed nodes.

In a Sensor Node, the computational module is a programmable unit that provides

computation, storage and bidirectional communication with other nodes in the system.

This module interfaces with the analog and digital sensors in the node, performs ba-

sic signal processing and dispatches the data according to the application’s needs [29].

The other modules in a Wireless Sensor Node are comprised by sensors and a radio for

communication.

While several [3, 38, 34] platforms have been proposed and implemented for Wireless

Sensor Nodes, the most popular and representative are the U.C. Berkeley’s Mote1 archi-

tectures [22, 35]. These are “current generation” devices constructed from off-the-shell

components that have many of the key characteristics of the general class of Wireless

Sensor Nodes [22]. They provide a microcontroller with internal program memory, sensor

board interfaces, a low power radio module and a non-volatile memory chip.

5

Figure 1: The Mica2 Sensor Node

2.1.1 Mica Motes

The UC Berkeley’s Mote family (see Table 1) has evolved over the past few years

into a stable platform for sensor networks research. It’s current generation, the Mica2

(see Figure 1) uses a single channel radio from RF Monolithics (operating at 916Mhz in

the USA and 433Mhz in Europe) to provide bidirectional communication at 40bps [31],

an Atmel Atmega128 microcontroller (a member of Atmel’s AVR architecture) running

at 8Mhz, and a 512KB memory chip. A pair of conventional batteries is used as energy

source. It’s small size (aproximately 5 x 4 x 1.5 cm) allows deployment in remote locations

with minimal interference with the existing habitat [31].

2.1.1.1 Hardware Organization

The processor within the Mica2 is an Atmel Atmega128 AVR. AVR is an 8-Bit Har-

vard architecture, with separete instruction and data memory. This architecture will be

discussed at length in Chapter 3.

In the motes, the AVR interfaces with four hardware blocks (Radio, LEDS, Flash

Memory and Sensor board / Programming interface). The general hardware organization

is presented in Figure 2. A simple schematic of the Mica2 architecture is presented in

Figure 3.

LEDs

Three Programmable LEDs are connected to the AVR in the Mica2 motes. These

may be used for status and output of digital values.

1Mote, n. A small particle, as of floating dust; anything proverbially small; a speck: “The little motes
in the sun do ever stir, though there be no wind” (Bacon).

6

Figure 2: Mote Architecture General Organization

Flash Memory

In order to allow permanent storage and data logging in the motes, a 512KB Serial

Flash memory chip is attached to one of the AVR’s UART ports. If installed in

conjuntion with a simple co-processor, this secondary memory could be also used

for over-the-air reprogramming of the main microcontroller.

Radio

The Mica2 uses a low-power, single-chip UHF transciever from Chipcom as it’s radio

component. The CC1000 is designed for very low power and very low voltage wireless

applications. The circuit is mainly intended for the ISM (Industrial, Scientific and

Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868 and 915

MHz, but can easily be programmed for operation at other frequencies in the 300-

1000 MHz range. The main operating parameters of CC1000 can be programmed

via an easy-tointerface serial bus, thus making CC1000 a very flexible and easy to

use transceiver [6].

CC1000 is configured via a simple 3-wire interface. There are 36 8-bit configuration

registers, each addressed by a 7-bit address. A Read/Write bit initiates a read or

write operation. A full configuration of CC1000 requires sending 29 data frames

of 16 bits each (7 address bits, R/W bit and 8 data bits). All registers are also

7

Figure 3: Mica2 General Schematic

readable.

Data is transferred to and from the AVR microcontroller via a dedicated SPI (Serial

Peripheral Interface) Bus, and the Radio generates one interrupt every 8 bits when

in receive mode.

Sensor and Programming Interface

The Mica2 interfaces with external devices through a 51-pin connector wired to CPU

IO pins. This connector provides access to the AVR’s GPIO (General Purpose Input

or Output) Pins, UART and I2C Bus, and is used for device programming and as a

sensor board interface.

2.1.1.2 Sensor Boards

While the modular design of the motes allows a wide range of analog and digital

sensors to be attached to the Sensor Node, the reference sensor board for the Mica platform

is the “Mica Sensorboard” (See Figure 4 [39]). A fully-populated micasb has five different

sensor modules in order to support a wide variety of potential sensor networks applications.

These sensors include: light, temperature, acceleration, magnetic field, and acoustic, and

each of these sensors can be purchased off-the-shelf [23].

8

Figure 4: The Mica Sensorboard

A photo-resistor and thermistor are used to sense light and temperature. An Analog

Devices ADXL202JE accelerometer is capable of delivering 2-axis acceleration sensing. For

magnetic filed, the board is equipped with a Honeywell HMC1002 2-axis magnetometer.

An omni-directional microphone, Panasonic WM-62A, is used to capture acoustic signal,

which is amplified and bandpass-filtered to the voice band before being sampled.

In addition to the above sensors, the board is capable of generating acoustic output,

using its 4kHz single tone buzzer. Optional hardware support to detect the generated

tone on a receiving node is provided by an active bandpass filter and a LMC567 tone

decoder from National Semiconductor, which has built in phase lock loop and adjustable

threshold detection.

All modules in the sensor board can be power cycled independently, and are power

isolated from the Mica’s processor through an analog switch. Finally, gain of the magne-

tometer and the microphone amplification is adjustable by tuning the two digital poten-

tiometers over the I2C bus [18].

2.1.1.3 Programming

The Mica Motes are programmed through a gateway board that interfaces with the

mote’s sensor and programming interface and a PC’s Serial Port. Further discussion on

the programming of the AVR processors will be presented in Chapter 3.

9

Figure 5: Mote Kit from Crossbow

Given that many times the environment in witch the motes are deployed is inhos-

pitable or even unreachable, and that many times the sensing application must be ad-

justed or completely changed, over-the-air reprogramming of the motes is a strong need.

Current researches make use of a simple coprocessor and the flash memory in the mote for

full reprogramming [22], or over-the-air deployment of applications making use of virtual

machines [28].

2.1.1.4 Availability

UCB Mote “Kits” are commercially available through Crossbow Technology Inc., an

Integrated Sensors Manufacturer from Silicon Valley. These kits include from 2 to 20

Mica2 and Mica2Dot motes, programming and sensor Boards. As of December 2003, the

suggested price for a MOTE-KIT5040, including 4 Mica2 and 4 Mica2Dot motes, 5 sensor

boards and a programming board (See Figure 5) was U$ 1,995.00.

2.1.1.5 Future Development

The next step for the Mote family is, undoubtedly, single chip design. In the first

semester of 2003, the first successful tests with Spec, the first single chip mote, were

realized. Spec (See Figure 6) measures approximately 2 x 2.5 mm, has an AVR-like RISC

core on it, 3K of memory, 8 bit On-chip ADC, radio transmitter, paged memory system,

register windows, SPI programming interface, RS232 compatible UART, 4-bit input port

and 4-bit output port. The expected production cost for each Spec Mote is U$ 0.30,

batteries included.

10

Figure 6: The Spec Mote

2.1.2 Related Work

Although most of the current research in Wireless Sensor Nodes comes from, or is

related to the UCB Motes 2, there are several other related hardware designs developed

or in development.

PicoRadio, also developed at Berkeley, aims to develop meso-scale low cost (less than

50 cents) transceivers for ubiquitous wireless data acquisition that minimizes power

and energy dissipation.

The Manatee project, developed at the University of Copenhagen, aims is to study

Bluetooth-based data dissemination and monitoring applications.

WINS (Wireless Integrated Network Sensors), from UCLA, is another single-chip Wire-

less Sensor Node design iniciative.

Smart Dust, closely related to the Mote Projects, aims to pack an entire system of

sensing and communication into a cubic millimeter at relatively low-cost.

2.2 Communication in Wireless Sensor Networks

The Network component of Wireless Sensor Networks presents a series of new design

challenges and is a topic of open research.

2The Motes/TinyOS group at Berkeley is coordinated by Prof. David Culler, and supported by Intel.

11

Sensor Networks must be power-aware. Most current network protocols are conser-

vative only in their use of bandwidth. In a sensor node, all communication – including

passive listening – will have a significant effect on the node’s limited energy reserves.

Sensor Networks are highly dynamic. Over time, sensors may fail or new sensors

may be added. Sensors are likely to experience changes in their position and reachability.

These changes make static configuration unacceptable.

Sensor Networks must be self-configuring. A single human may be responsible for

thousands of nodes in a dense sensor network, and a design where each sensor node

requires individual attention would be impractical.

All of these characteristics, presented in [24] and discussed at length in [12, 40, 19], may

affect many aspects of the system’s design, including routing and addressing mechanisms,

naming services, security mechanisms and so forth. This section, while not addressing

any of these challenges at length, presents the basic concepts for WSN communication,

addressing Data Link Layer issues and discussing routing mechanisms.

2.2.1 Data Link Layer

The data link layer is responsible for the multiplexing of data streams, data frame

detection, medium access and error control [27], and ensures reliable point-to-point and

point-to-multipoint connections in a communication network.

While Media Access Control (MAC) and transmission control protocols are well-

studied for traditional computer networks, the different wireless technologies, applications

characteristics and usage scenarios create a complex mix of issues related to the design of

the MAC for Wireless Sensor Networks.

The capabilities of sensor devices are also very different from traditional nodes in a

computer network. Typically on these platforms, a low power radio delivers bandwidth

in a single channel. There is little or no dedicated support for carrier sensing, collision

detection, and no specific framing or encoding enforced by the hardware. Furthermore,

there is no specific protocol stacks in place to dictate the MAC protocol design [40].

This section presents an overview of the main MAC design issues in Wireless Sensor

Networks, and presents possible solutions based on the work of [40].

12

2.2.1.1 Listening Mechanism

Listening Mechanisms like the CSMA/CD (Carrier Sense Multiple Access With Col-

lision Detection) are very effective when all nodes can hear each other. In spite of being

simple, listening comes with an energy cost, since the radio must be on in order to listen.

To conserve energy, the carrier sensing time must be shortened. In many protocols, such

as IEEE 802.11, the channel must be sensed even during backoff. The CSMA for Sensor

Networks should take this opportunity to turn off the radio.

Given the fact that Sensor Networks use a simple Radio without hardware mechanism

for collision detection, nodes that send data at the same time will corrupt each other. The

solution for this is to introduce random delay for transmission to unsyncronize the nodes.

2.2.1.2 Contention Based Mechanism

Explicit contention control schemes used in many MAC protocols, such as IEEE

802.11, require the use of control packets, such as Request to Send (RTS), Clear to Send

(CTS) and Acknowledgements (ACK). For networks where packets are large, this small

control packets impose little overhead. However, this overhead can be very substantial in

Sensor Networks, where the packets are expected to be a few bytes long.

Therefore, a contention scheme for WSN should use a minimum number of control

packets. Woo and Culler [40] suggest that a node wishing to transmit first sends a RTS

packet to it’s parent and waits for a CTS reply. If no CTS is received for a timeout

period, the node goes into backoff with a binary exponential increasing backoff window.

Similarly, if it receives a CTS not destined to it, it will also go into backoff. If no CTS

has been received after five retries, the transmission should be dropped. Furthermore, if

a node hears a CTS before any of it’s own transmissions, it will defer transmission for one

packet time to avoid corrupting the traffic.

2.2.2 Routing

Sensor Networks present several characteristics that distinguish them from contem-

porary communication and wireless ad-hoc networks [1]:

• It is not feasible to build a global addressing scheme for the deployment of sheer

number of sensor nodes.

13

• Contrary to typical communication networks, most applications of sensor networks

require the flow of data from multiple regions (sources) to a particular sink.

• Generated traffic has significant redundancy in it since multiple sensors may generate

same data within the vicinity of the phenomenon.

• Sensor nodes are very constrained in terms of transmission power, energy resources,

processing cabacity and storage.

These characteristics have brought about many new algorithms for the problem of

routing in sensor networks. This section summarizes the system architecture design issues

for sensor networks, as presented in [1] and presents some relevant routing protocols for

Sensor Networks.

2.2.2.1 Design Issues

As the performance of a routing protocol is closely related to the architectural model,

this section captures the principal architectural and design issues to be considered by a

routing protocol for Sensor Networks.

Network Dynamics: While most WSN setups use stationary sensor nodes, individual

sensors may fail or run out of power at any time, thus creating the need for dynamic

route changing.

Node Deployment: The topology of the nodes may be self-organizing, in situations

where the nodes are scattered at random, thus creating an ad-hoc infrastructure.

Energy Considerations: As the energy required to transmit and receive data in a sen-

sor node is much higher than that required to sense a phenomenon or process data

in the node, routing protocols must be energy-aware.

Data Delivery Models: The data delivery model in a Sensor Network can be, depend-

ing on the application, continuous, event-driven or query-driven. The routing pro-

tocol is highly influenced by the data delivery model, especially with regart to the

minimization of energy and route stability [1].

Data Aggregation: Since sensor nodes might generate significant redundant data, sim-

ilar packets from multiple nodes can be aggregated so the number of transmissions

can be reduced. Data aggregation is the combination of data from different sources

14

using fuctions such as suppression (eliminating duplicates), min, max and average

[1].

2.2.2.2 Data-centric Protocols

In data-centric routing, the sink sends queries to certain regions and waits for data

from the sensors located in the selected regions. Since data is being requested through

queries, and there is no global identifier in the node, attributed-based naming is necessary

to specify the properties of data. This section presents the most relevant data-centric

protocols in development today.

Directed Diffusion: In this solution, each sensor names data that it generates using

one or more attributes. A sink may query for data by dissiminating interrests,

and intermediate nodes propagate these interrests. For example [36], a seismic

sensor may generate a data: (type = seismic, id = 66, location = SE, timestamp

= 04.01.13), and sink may send an interrest of the form: (type = seismic, location,

SE). The intermediate nodes propagate the interrest to the selected region, and the

sensors that match the request send back the sensed data.

SPIN: The SPIN (Sensor Protocols for Information via Negotiation) solutions are de-

signed to disseminate individual sensor information to all the sensor nodes, assuming

all of them are potential sinks [36].

Rumor Routing: This solution is a variant of the Directed Diffusion Technique intended

for contexts in which geographic routing criteria are not applicable.

2.2.2.3 Hierarchical Protocols

The main aim of hierarchical routing is to efficiently maintain the energy consumption

of sensor nodes by involving them in multihop communication within a particular cluster

and by performing data aggregation and fusion in order to decrease the number of trans-

mitted messages to the sink [1]. Cluster formation is typically based on energy reserve

of sensors and sensor’s proximity to the cluster head. LEACH (Low-Energy Adaptative

Clustering Hierarchy) [21] is the most popular and representative hierarchical routing

protocol for Sensor Networks.

15

2.3 Sensor Network Applications

Sensor networks may consist of many different types of sensors such as seismic, low

sampling rate magnetic, thermal, visual, infrared, acoustic and radar, which are able to

monitor a wide variety of ambient conditions that include the following [2]:

• temperature,

• humidity,

• vehicular movement,

• lightning condition,

• pressure,

• soil makeup,

• noise levels,

• the presence or absence of certain kinds of objects,

• mechanical stress levels on attached objects, and

• the current characteristics such as speed, direction, and size of an object.

Sensor nodes can be used for continuous sensing, event detection, location sensing,

and local control of actuators [2]. The concept of pervasing micro-sensing through Wire-

less Sensor Networks promise many new application areas. This section presents and

categorizes the applications of WSN into military, environment, health, and commercial

areas.

2.3.1 Military applications

Wireless sensor networks can be an integral part of military command, control, com-

munications, computing, intelligence, surveillance, reconnaissance and targeting (C4ISRT)

systems. The rapid deployment, self-organization and fault tolerance characteristics of

sensor networks make them a very promising sensing technique for military C4ISRT [2].

Since sensor networks are based on the dense deployment of disposable and low-cost

sensor nodes, destruction of some nodes by hostile actions does not affect a military op-

eration as much as the destruction of a traditional sensor, which makes sensor networks

16

Figure 7: Deployed Firebug Mote

concept a better approach for battlefields. Some of the military applications of sensor net-

works are monitoring friendly forces, equipment and ammunition; battlefield surveillance;

reconnaissance of opposing forces and terrain; targeting; battle damage assessment; and

nuclear, biological and chemical attack detection and reconnaissance [2].

2.3.2 Environmental applications

Environmental and habitat monitoring is a driving field for wireless sensor networks

[4]. It’s applications include tracking the movements of small animals; monitoring envi-

ronmental conditions; chemical/biological detection; precision agriculture; forest fire de-

tection; meteorological or geophysical research; flood detection; bio-complexity mapping

of the environment; and pollution study.

2.3.2.1 Forest fire detection

Since sensor nodes may be strategically, randomly, and densely deployed in a forest,

sensor nodes can relay the exact origin of the fire to the end users before the fire is spread

uncontrollable [2].

The FireBug project [5] uses of a network of GPS-enabled, wireless thermal sensors, a

control layer for processing sensor data, and a command center for interactively commu-

nicating with the sensor network. Each mote has sufficient power, radio communication

and processing capabilities to support location and thermal sensors and data handling.

Along with geographic position, motes (See Figure 7) measure humidity, temperature and

light intensity.

17

Figure 8: Motes deployed on Great Duck Island

2.3.2.2 Habitat Monitoring

Researchers in the Life Sciences are becoming increasingly concerned about the po-

tential impacts of human presence in monitoring plants and animals in field conditions

[29]. In this context, sensor networks represent a significant advance over traditional in-

vasive methods of monitoring. Sensors can be deployed prior to the onset of the breeding

season or other sensitive period (in the case of animals) or while plants are dormant or

the ground is frozen (in the case of botanical studies). Sensors can be deployed on small

islets where it would be unsafe or unwise to repeatedly attempt field studies [29].

The Great Duck Island Habitat Monitoring project [29] is a pilot application for the

monitoring of migratory seabirds in the coast of Maine. In the spring of 2002, 32 wireless

sensor nodes were deployed on Great Duck Island, Maine (See figure 8). These nodes

monitor the microclimates in and around nesting burrows. At the end of the field season

in November 2002, well over 1 million readings had been logged from the 32 motes deployed

on the island and made available on the internet through the GDI Project Website [33].

2.3.3 Health applications

Some of the health applications for sensor networks are providing interfaces for the

disabled; integrated patient monitoring; drug administration in hospitals; monitoring the

movements and internal processes of insects or other small animals; telemonitoring of

human physiological data; and tracking and monitoring doctors and patients inside a

hospital [2].

18

2.3.4 Commercial applications

Commercial applications for WSN include monitoring material fatigue; managing in-

ventory; monitoring product quality; constructing smart office spaces; robot control and

guidance in automatic manufacturing environments; interactive toys; factory process con-

trol and automation; smart structures with sensor nodes embedded inside; machine di-

agnosis; transportation; factory instrumentation; local control of actuators; and vehicle

tracking and detection [2].

19

3 The AVR Architecture

AVR is a widely used family of 8-bit RISC microcontrollers from Atmel. Usually

deployed in the form of MCUs (Microprocessor Control Units1), the AVR provides good

performance at low cost and low power consumption in a simple Harvard Architecture2,

making it the natural choice for Wireless Sensor Nodes processing and control.

This chapter describes the AVR microcontroller core architecture and the AT90S8515

AVR MCU, used in the first implementation of the EPOS initialization system for AVR

architecture (See Chapter 4).

3.1 Architectural Overview

The AVR CPU resembles most RISC processors but has smaller registers. The core

features 32 identical 8-bit registers that can hold addresses or data. Since 8-bit address

pointers are fairly worthless even in an 8-bit device, the last six registers can be used in

pairs, as address pointers. Dubbed X, Y, and Z, these three meta-registers can be used

for any load or store operation [37]. All operations are register-toregister; the chip follows

a strict load/store model.

Figure 9 presents the Block Diagram of the AVR Architecture.

3.1.1 General Purpuse Registers

The AVR’s fast-access Register file contains 32 x 8-bit general purpose registers with

a single clock cycle access time, allowing sincle-cycle Arithmetic Logic Unit (ALU) oper-

ation. Six of the 32 registers can be used as three 16-bit indirect address register pointers

for Data Space addressing.

The register file is mapped into the data address space. The first 32 bytes of data

1 In an MCU, the processor, memory and I/O all reside in the same physical IC (integrated circuit).
2A Harvard Architecture provides separate momories and buses for program and data.

20

Figure 9: Block Diagram of the AVR Architecture [9]

memory, $0x0000 – $0x001F, correspond to registers R0-R31.

3.1.2 I/O Registers

The AVR’s 64 I/O Registers are memory-mapped into addresses $0x0020 – $005F.

These registers include status, interrupt and timer control, stack pointer, GPIO (General-

Pourpose Input and Output) and SPI (Serial Programming Interface) and UART registers.

Table 2 presents the I/O registers for the AT90S8515 MCU. Unused and reserved locations

are not shown in the table.

21

3.1.2.1 Status Register

The Status Register contains information about the result of the most recently exe-

cuted arithmetic instruction. This information can be used for altering program flow in

order to perform conditional operations. The AVR Status Register is defined as:

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C

• Bit 7 - I: Global Interrupt Enable

• Bit 6 - T: Bit Copy Storage

• Bit 5 - H: Half Carry Flag

• Bit 4 - S: Sign Bit, S = N ⊕ V

• Bit 3 - V: Two’s Complement Overflow Flag

• Bit 2 - N: Negative Flag

• Bit 1 - Z: Zero Flag

• Bit 0 - C: Carry Flag

3.1.2.2 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for

storing return addresses after interrupts and subroutine calls. The Stack Pointer Register

always points to the top of the stack. The stack is implemented as growing from higher

memory to lower memory locations, thus a Stack PUSH command decreases the Stack

Pointer. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O Space,

SPH and SPL.

3.1.3 Data Memory

In the AT90S8515 MCU, the first 96 memory locations address the Register file and

I/O memory. The next 512 locations address the internal data SRAM. An optional

external data SRAM can be placed in the same SRAM memory space, filling the AVR’s

64K address space. Figure 10(b) presents the AT90S8515 data memory map.

22

(a) Program Memory (b) Data Memory

Figure 10: AVR Memory Maps [9]

23

Memory Register Description
Location Name

$0x5F SREG Status Register

$0x5E SPH Stack Pointer High

$0x5D SPL Stack Pointer Low

$0x5B GIMSK General Interrupt Mask register

$0x5A GIFR General Interrupt Flag Register

$0x59 TIMSK Timer/Counter Interrupt Mask register

$0x58 TIFR Timer/Counter Interrupt Flag register

$0x55 MCUCR MCU general Control Register

$0x53 TCCR0 Timer/Counter0 Control Register

$0x52 TCNT0 Timer/Counter0 (8-bit)

$0x4F TCCR1A Timer/Counter1 Control Register A

$0x4E TCCR1B Timer/Counter1 Control Register B

$0x4D TCNT1H Timer/Counter1 High Byte

$0x4C TCNT1L Timer/Counter1 Low Byte

$0x4B OCR1AH Timer/Counter1 Output Compare Register A High Byte

$0x4A OCR1AL Timer/Counter1 Output Compare Register A Low Byte

$0x49 OCR1BH Timer/Counter1 Output Compare Register B High Byte

$0x48 OCR1BL Timer/Counter1 Output Compare Register B Low Byte

$0x45 ICR1H T/C 1 Input Capture Register High Byte

$0x44 ICR1L T/C 1 Input Capture Register Low Byte

$0x41 WDTCR Watchdog Timer Control Register

$0x3E EEARH EEPROM Address Register High Byte (AT90S8515)

$0x3E EEARL EEPROM Address Register Low Byte

$0x3D EEDR EEPROM Data Register

$0x3C EECR EEPROM Control Register

$0x3B PORTA Data Register, Port A

$0x3A DDRA Data Direction Register, Port A

$0x39 PINA Input Pins, Port A

$0x38 PORTB Data Register, Port B

$0x37 DDRB Data Direction Register, Port B

$0x36 PINB Input Pins, Port B

$0x35 PORTC Data Register, Port C

$0x34 DDRC Data Direction Register, Port C

$0x33 PINC Input Pins, Port C

$0x32 PORTD Data Register, Port D

$0x31 DDRD Data Direction Register, Port D

$0x30 PIND Input Pins, Port D

$0x2F SPDR SPI I/O Data Register

$0x2E SPSR SPI Status Register

$0x2D SPCR SPI Control Register

$0x2C UDR UART I/O Data Register

$0x2B USR UART Status Register

$0x2A UCR UART Control Register

$0x29 UBRR UART Baud Rate Register

$0x28 ACSR Analog Comparator Control and Status Register

Table 2: AVR I/O Registers

24

3.1.4 Program Memory

In the AT90S8515 MCU contains 8K bytes of Programmable Flash Memory for pro-

gram storage. Since all instructions are 16- or 32-bit words, the Flash is organized as

4Kx16. The AT90S8515 Program Counter is 12 bits wide, thus addressing the 4096

program memory addresses.

In early AVR models, such as the AT90S8515, the program memory can only be

updated by writing a full binary image to the flash. Once the program data is downloaded,

no further updates of the flash are possible, as there is no instruction capable of writing

to the program memory. These devices can be programmed serially, via ISP (In-System

Programming) or parallelly, via High-Voltage Programming.

In-System Programming uses the AVR internal SPI (Serial Peripheral Interface) to

download code into the flash and EEPROM memory of the AVR. ISP programming

requires only VCC , GND, RESET and 3 signal lines for programming. All AVR devices

except AT90C8534, Attiny11 and ATtiny28 can be ISP programmed. The AVR can be

programmed at the normal operating voltage, normally 2.7V-6.0V. No high voltage signals

are required. The ISP programmer can program both the internal flash and EEPROM

[11].

For High-Voltage programming a 12V programming voltage is applied to the RE-

SET pin of the AVR device. All AVR devices can be programmed with High-Voltage

programming, and the target device can be programmed while it is mounted in its socket.

3.1.4.1 Self-Programming

Recent AVR MCUs, such as the Atmega128, used in the Mica Motes, provide a Store

Program Memory SPM) instruction capable of erasing and writing a page in the program

memory.

In the MCUs where the SPM instruction is available, the Flash memory is divided into

two sections, one Application section and one Boot Loader section. The SPM instruction

can only be executed from the Boot Loader section [10]. The Flash memory is divided

into pages containing 32, 64, or 128 words each. Memory organization is shown in Figure

11.

All Self-programming operations are performed using the SPM instruction. Different

operations (page erasing, buffer filling and page writing) are selected using the SPMCR

25

Figure 11: Self-Programmable AVR Program Memory Organization [10]

Register. Flash memory updates are done page by page.

Before writing new data to a page, the page must be erased. The Z-register (R31:R30)

is used to select the page to be erased.

To write new data to a page, the Page Buffer must be filled first. The Page Buffer is

a separate (not SRAM) write-only buffer holding one temporary page, and must be filled

word by word, using the R1:R0 registers.

When the Page Buffer is loaded with new data, it must be written to Flash memory.

For this, the Z-register is used to select the page to be written, and the page writing

operation is selected in the SPMCR Register.

3.1.5 Addressing Modes

This section describes the several addressing modes provided by the AVR architecture

for access to the program memory (Flash) and data memory (SRAM, Regiter File and

I/O Memory).

3.1.5.1 Register Direct – Single Register

One of the 32 general purpose registers (dest) contains the instruction operand.

Example: CLR R0 ; R0 is cleared

26

3.1.5.2 Register Direct – Two Registers

Two of the 32 general purpose registers contains the instruction operands; one is the

Source Register and the other is the Destiny Register.

Example: ADD R0,R1 ; R0 = R0 + R1

3.1.5.3 I/O Direct

An address from the 64 Special Function Registers is contained in the 6 bit I/O

portion of the instruction. The address of the Source or Destiny Register is contained in

the remaining 6 bits of the instruction operands.

Example: IN R16,MCUCR ; R16 = MCUCR (I/O Address 0x35)

27

3.1.5.4 Data Direct

A 16 bit Data Address is specified as an operand (to access up to 64K of RAM

memory). The address of the Source or Destiny Register is contained in the remaining 6

bits of the instruction operands.

Example: LDS R0,$1234 ; R0 = &0x1234

3.1.5.5 Data Indirect with Displacement

Data operand address is the result of the addition of the Y or Z register and the 6 bit

Offset found on the instruction. Reg is the Source or Destiny Register

Example: LDD R0,Y + $3F ; R0 = &($3F + [Y])

28

3.1.5.6 Data Indirect

Data operand address is the contents of the X, Y or Z register. Reg is the Source or

Destiny Register.

Example: LD R0,X ; R0 = &[X]

This mode can also be used with Pre-Increment and Post-Increment of the Address

Register.

Pre-Decrement Example: LD R0,Z- ; R0 = &[--Z]

Post-Increment Example: LD R0,Z+ ; R0 = &[Z++]

29

3.1.5.7 Constant Addressing Using LPM

Program memory word address operand is specified by the 15 MSB bits of the Z

register (Z15:1). The LSB (Z0) selects which byte is to be fetched and stored in R0.

Example: LPM ; RO = &(Program Memory Address [Z] >> 1) (Z0 selects high

or low byte.)

3.1.5.8 Indirect Program Addressing

Program Execution continues from the memory location specified on the Z register.

Example: IJMP ; PC = Z

3.1.5.9 Relative Program Addressing

Program execution continues from the memory location specified by adding the PC,

the relative offset K and one. The relative offset goes from -2048 to 2047.

Example: RJMP $020 ; PC = PC + 20 + 1

30

3.2 Timers

The AT90S8515 AVR MCU provides two timers (one 8-bit and one 16-bit). In prin-

ciple, a timer is a simple counter. Its advantage is that the input clock and operation

of the timer is independent of the program execution. The deterministic clock makes it

possible to measure time by counting the elapsed cycles and take the input frequency of

the timer into account [7].

3.2.1 Timer Events

The timers of the AVR can be specified to monitor several events:

Timer Overflow: The counter has counted up to its maximum value and will be reset

to zero in the next timer clock cycle.

Compare Match: The Output Compare Register can be loaded with a value which

the timer will be checked against every timer cycle. When the timer reaches the

compare value, an event is signaled, and the Timer can be configured to clear the

count register to “0”.

Input Capture: The AVR has an input pin to trigger the input capture event. A signal

change at this pin causes the timer value to be read and saved in the Input Capture

Register. This is useful to measure the width of external pulses.

The timer operates independently of the program execution, and for each timer event

there is a corresponding status flag in the Timer Interrupt Flag Register. The occurrence

31

of timer events can be monitored by constantly polling of status flags or by breaking of

program flow and execution of Interrupt Service Routines.

3.2.2 Watchdog Timer

A watchdog timer is a piece of hardware that can cause a processor reset when it

judges that the system has hung, or is no longer executing the correct sequence of code

[30].

The hardware component of a watchdog timer is a counter that is set to a certain

value and then counts down towards zero. It is the responsibility of the software to set

the count to its original value often enough to ensure that it never reaches zero. If it does

reach zero, it is assumed that the software has failed in some manner and the CPU is

reset, or an interrupt is generated.

In the AT90S8115, the Watchdog Timer (WDT) is independent from the rest of the

system. It has its own internal oscillator, which runs as long as one of the WDT operating

modes is enabled (Reset or Interrupt). This ensures safe operation even if the main CPU

oscillator fails [8].

3.3 Serial Peripheral Interface

Serial Peripheral Interface (SPI) is a serial bus standard established by Motorola and

supported in silicon products from various manufacturers. It is a synchronous serial data

link that operates in full duplex (signals carrying data in both directions simultaneously)

[25].

Devices communicate using a master/slave relationship, in which the master initiates

the data frame. When the master generates a clock and selects a slave device, data may

be transferred in both directions simultaneously.

SPI specifies four signals: clock (SCLK); master data output, slave data input

(MOSI); master data input, slave data output (MISO); and slave select (SS). SCLK

is generated by the master and input to all slaves. MOSI carries data from master to

slave. MISO carries data from slave back to master. A slave device is selected when

the master asserts its SS signal. If multiple slave devices exist, the master generates a

separate slave select signal for each slave. Figure 12 presents a single master, multiple

slave SPI implementation.

32

Figure 12: Multiple slave SPI implementation [25]

The AT90S8515 provides a fully functional SPI implementation, capable of working

in either master or slave mode and controlled by I/O memory mapped registers.

3.4 UART

The AT90S8515 MCU provides a full-duplex Universal Asynchronous Receiver/Transmitter

(UART), featuring:

• Baud Rate generator

• Noise Filtering

• Overrun detection

• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX

Complete.

Data transmission and reception, as well as UART setup is controlled by I/O memory

mapped registers.

33

3.5 GPIO

The AT90S8515 architecture provides four bi-directional I/O ports. Three I/O mem-

ory address locations are allocated for each port, one each for the Data Register, PORTx,

Data Direction Register, DDRx, and the Port x Input Pins, PINx. The last enables access

to the physical value on each Port x pin. The Port x Input Pins address is read only,

while the Data Register and the Data Direction Register are read/write. All Port x Pins

can be used for General Purpose Input or Output (GPIO).

3.6 Sleep Modes

AVR microcontrollers provide several sleep modes. The purpose of these modes is to

provide a way of suspending program execution when necessary, thereby reducing power

consumption [13]. The Sleep Modes available in the AT90S8515 MCU are (in order from

maximal to minimal power consumption):

• Idle mode

The idle mode stops the CPU but leaves peripherals (UART, Analog Comparator

etc.) running. The MCU will continue program execution immediately after waking

up from Idle mode.

• Powersave mode

This mode is identical to the Powerdown mode, with one exception: The Timer

Crystal Oscillator will continue to operate and the Timer can continue to count.

The device can wake up from either a Timer Overflow or Output Compare event.

• Powerdown mode

In this mode, all Oscillators are stopped while the External Level interrupts and

the Watchdog continue operating. Only an External Reset, a Watchdog Reset or

an External Level interrupt can wake up the MCU.

The device is sent into sleep mode by selecting the desired sleep mode in the MCU

Control Register, enabling interrupts that should be able to wake the MCU up from sleep

and executing a SLEEP intruction.

34

4 EPOS initialization in the AVR

The EPOS system was born in 1997 as a project to experiment with the concepts

and mechanisms of application-oriented system design [14]. EPOS is thus an intrinsically

application-oriented operating system, and today is evolving into a fully functional, multi-

platform, very high performance OS. Current results include implementations for high-

performance Clusters of Commodity Workstations based on Myrinet Networks [16, 17, 15]

and ports to the PowerPC (32-bit) and H8 (8-bit) architectures [32]. EPOS aims to de-

liver functionality (giving the application it’s necessary runtime support), customizability

(being tailored to specific applications) and efficiency (making resources available to the

application with the lowest possible overhead) [14].

This chapter presents an overview of the EPOS system, focusing on the EPOS ini-

tialization process and it’s implementation for the AVR architecture.

4.1 EPOS System Architecture

EPOS relies on System Abstractions, Hardware Mediators and Aspects to ensure

component reusability. Abstractions describe scenario-independent functionalities, are

widely reusable and represent most of the components in the system. A hardware mediator

is a system-dependent abstraction of elements of the hardware platform that are used by

system abstractions and scenario aspects [14]. Aspects provide configurable functionalities

for applications, such as sharing, protection and atomicity.

4.1.1 System Abstractions

EPOS families of System Abstractions are the result of the decomposition of the ded-

icated computing domain . System abstractions are modeled independently of execution

scenario aspects and and specific system architectures [14]. Figure 13 presents a top level

representation of EPOS families of abstractions.

35

Figure 13: EPOS Families of Abstractions [14]

4.2 EPOS Initialization

The first phase of the EPOS initialization process in comprised by the bootstrap and

a setup utility. The setup utility runs previous to the operating system and builds an

elementary execution context for EPOS, initializing hardware components.

The second phase, the init utility, concerns the initialization of system data structures

and the creation of the first (and possibly unique) application process.

4.2.1 The Setup Utility for the AVR

EPOS Setup Utility is responsible for building an elementary execution context for

the OS. It runs after the bootstrap and previous to the Init Utility.

In the AVR, the bootstrap simply disables interrupts and calls setup, passing the Sys-

Info Structure as a parameter. The SysInfo structure describes the relevant characteristics

of the forthcoming EPOS configuration.

As the Setup utility initiates, it proceeds with hardware setup, updating and com-

pleting SysInfo, including information about the physical resources configured, a memory

map describing how the operating system has been loaded, the node’s logical id, etc [14].

In the AVR, Setup is mainly responsible for setting up the interrupt controller, check-

ing system integrity, setting up the Init entry point and setting up system data structures.

36

Figure 14: Overview of EPOS initialization [14]

4.2.2 The Init Utility

EPOS init is a routine that has plain access to the address space of the operating

system, thus being able to invoke system operations. The initialization procedure carried

out by the init utility consists in checking the traits of each abstraction to determine

whether it has been included in the current system configuration and invoking the init

class method for present abstractions [14].

After calling the init class method for all present abstractions, the init utility invokes

EPOS operations, which by now are fully operational, to create the first process. If the

dedicated application running on EPOS is executed by a single process, then the process

created by the init utility is the application’s unique process. Otherwise, this process is a

loader that subsequently creates application processes in a multitasking environment [14].

4.2.3 Overview of EPOS initialization

An overview of EPOS initialization is presented in Figure 14. After loading the

boot image, which includes a preliminary system description (SysInfo), the bootstrap

invokes the setup utility to configure the hardware platform. Setup then utility builds an

elementary memory model, configures required devices, loads EPOS, loads and activates

the init utility. The init utility invokes the init class method of every abstraction included

in the system to initialize its logical structure. It finishes loading the executable provided

in the boot image to create the first process [14].

37

4.2.4 Considerations for the AVR Architecture

Having being designed bearing in mind a Von Neuman, self programming architecture,

the EPOS initialization process has to undergo some changes when ported to a device

such as the AT90S8515 AVR MCU, a Harvard Architecture unable of changing program

memory at execution time.

In a regular system setup, the EPOS initialization system is eliminated after execution,

and the resources it occupied are returned to the system’s pool of free resources. This is

not possible in the AT90S8515, since program memory cannot be altered, and therefore

freed, at execution time. Since processes cannot be dynamically loaded at execution time,

application pointers must be pre-adjusted in the binary image uploaded to the MCU.

The original structure of the EPOS image must also be altered bearing in mind two

different address spaces and buses. Data structures, such as the SysInfo must now be

placed together with the code and copied to RAM memory at initialization time.

Recent AVRs, such as the Atmega128, enable the possibility of dynamically loading

code at boot time. This is done by writing code memory pages based on data from RAM

memory. This process makes use of the SPM (Store Program Memory) instruction, which

can only be executed from the Boot Loader section of Program Memory. Such AVR

MCUs would enable the EPOS initialization system (bootstrap, setup and init) to be

executed from the Boot Loader section, and freeing this section for application code after

execution.

38

5 Conclusions and Further

Research

Wireless Sensor Networks research and application is one of the most promising fields

in Computer Sciences today, and presents a series of new challenges, among which ade-

quate runtime support for applications is a key issue.

This research represented the first effort in the implementation functional release of the

EPOS system for the UCB Wireless Sensor Network Plattform (Mica Motes), the “state-

of-the-art” hardware platform for WSN. While the Motes group at Berkeley provides it’s

own Operating System for WSN (TinyOS), it does not provide the advanced functionality

nor the Application Oriented design EPOS does. As WSN applications evolve, TinyOS

will provide increasingly inadequate support, while EPOS can be easily configured and

expanded in order to support the application programmers needs. The highly portable

nature of EPOS also ensures reusability, both in system and application levels, as new

hardware platforms emerge.

The port of a fully functional EPOS system for the Mica Platforms is a work in

progress. Current results present a functional EPOS image of 1.3 KB for the AT90S8515

MCU (The object code for this image is presented in Annex A). Recent fund grants

from FUNGRAD/UFSC will alow LISHA to acquire commercial Motes Kits, thus al-

lowing further development focused on hardware mediators for Sensor Boards and Radio

Transceivers and on the implementation of Communication Systems.

Energy control is one of the fundamental problems of WSN, and the research and im-

plementation of WSN energy control mechanisms, including energy-aware communication

protocols is also on the “LISHA WSN” agenda.

39

References

[1] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless
sensor networks, 2003.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless integrated
network sensors. Computer Networks, 38(4):393–422, 2002.

[3] G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser, and H. Marcy. Wireless integrated
network sensors: Low power systems on a chip, 1998.

[4] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat moni-
toring: Application driver for wireless communications technology, 2001.

[5] M. M. Chen, C. Majidi, D. M. Doolin, S. Glaser, and N. Sitar. Design and construc-
tion of a wildfire instrumentation system using networked sensors (poster), 2003.

[6] Chipcon. Smartrf cc1000 datasheet, 2002.

[7] Atmel Corporation. AVR130: Setup and Use the AVR Timers. San Jose, California,
2002.

[8] Atmel Corporation. AVR132: Using the Enhanced Watchdog Timer. San Jose,
California, 2002.

[9] Atmel Corporation. AVR 8515 Microcontroller Datasheet. San Jose, California, 2003.

[10] Atmel Corporation. AVR Application Note 109: Self Programming. San Jose, Cali-
fornia, 2003.

[11] Atmel Corporation. STK500 User Guide. San Jose, California, 2003.

[12] David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk, and Alec Woo.
A network-centric approach to embedded software for tiny devices. Lecture Notes in
Computer Science, 2211, 2001.

[13] AVR Freaks. Design Note 003: AVR Sleep Modes, 2002.

[14] Antônio Augusto Fröhlich. Application-Oriented Operating Systems. Number 17
in GMD Research Series. GMD - Forschungszentrum Informationstechnik, Sankt
Augustin, August 2001.

[15] Antônio Augusto Fröhlich, Philippe Olivier Alexander Navaux, Sérgio Takeo Kofuji,
and Wolfgang Schröder-Preikschat. Snow: a parallel programming environment for
clusters of workstations. In Proceedings of the 7th German-Brazilian Workshop on
Information Technology, Maria Farinha, Brazil, September 2000.

40

[16] Antônio Augusto Fröhlich and Wolfgang Schröder-Preikschat. On component-based
communication systems for clusters of workstations. ACM Applied Computing Re-
view, 1(1):1–1, November 2001.

[17] Antônio Augusto Fröhlich, Gilles Pokam Tientcheu, and Wolfgang Schröder-
Preikschat. EPOS and Myrinet: Effective Communication Support for Parallel Ap-
plications Running on Clusters of Commodity Workstations. In Proceedings of 8th
International Conference on High Performance Computing and Networking, pages
417–426, Amsterdam, The Netherlands, May 2000.

[18] TinyOS Group. TinyOS Mica Developers Guide. University Of California, Berkeley,
2002.

[19] John S. Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan,
Deborah Estrin, and Deepak Ganesan. Building efficient wireless sensor networks
with low-level naming. In Symposium on Operating Systems Principles, pages 146–
159, 2001.

[20] W. Heinzelman. Application-Specific Protocol Architectures for Wireless Networks.
PhD thesis, Massachusetts Institute of Technology, 2000.

[21] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
Energy-efficient communication protocol for wireless microsensor networks. In
HICSS, 2000.

[22] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer
S. J. Pister. System architecture directions for networked sensors. In Architectural
Support for Programming Languages and Operating Systems, pages 93–104, 2000.

[23] Crossbow Technology Inc. Mts sensor, data acquisition boards overview, 2002.

[24] Deborah Estrin Jeremy Elson. An address-free architecture for dynamic sensor net-
works.

[25] David Kalinsky and Roee Kalinsky. Introduction to serial peripheral interface, 2003.

[26] John Kymissis, Clyde Kendall, Joseph A. Paradiso, and Neil Gershenfeld. Parasitic
power harvesting in shoes. In ISWC, pages 132–139, 1998.

[27] lan F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A
survey on sensor networks. IEEE Communications Magazine, August 2002.

[28] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, Oct. 2002. To appear.

[29] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John An-
derson. Wireless sensor networks for habitat monitoring. In ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA’02), Atlanta, GA,
September 2002.

[30] Niall Murphy. Watchdog timers, 2003.

41

[31] Joseph Robert Polastre. Design and implementation ofwireless sensor networks for
habitat monitoring. Master’s thesis, University of California, Berkeley, 2003.

[32] Fauze Valério Polpeta and Antônio Augusto Fröhlich. Portability in component-based
systems. LISHA, 2004.

[33] Great Duck Island Project. Habitat monitoring on great duck island –
http://www.greatduckisland.net/.

[34] Pico Radio Project. Pico radio – http://bwrc.eecs.berkeley.edu/research/pico radio/.

[35] TinyOS Project. Tinyos hardware designs.

[36] Praveen Rentala, Ravi Musunuri, Shashidhar Gandham, and Udit Saxena. Survey
on sensor networks.

[37] Jim Turley. Atmel avr brings risc to 8-bit world. Microprocessor Report, 11(9), 1997.

[38] Brett Warneke and Sunil Bhave. Smart dust mote core architecture.

[39] Alec Woo. The mica sensing platform, 2002.

[40] Alec Woo and David E. Culler. A transmission control scheme for media access in
sensor networks. In Mobile Computing and Networking, pages 221–235, 2001.

42

ANNEX A -- Object Code for the

Generated EPOS Image

at90s8515_loader: file format elf32-avr

Disassembly of section .text:

00000000 <__vectors>:

0: 10 c0 rjmp .+32 ; 0x22

2: 36 c0 rjmp .+108 ; 0x70

4: 35 c0 rjmp .+106 ; 0x70

6: 34 c0 rjmp .+104 ; 0x70

8: 33 c0 rjmp .+102 ; 0x70

a: 32 c0 rjmp .+100 ; 0x70

c: 31 c0 rjmp .+98 ; 0x70

e: 30 c0 rjmp .+96 ; 0x70

10: 2f c0 rjmp .+94 ; 0x70

12: 2e c0 rjmp .+92 ; 0x70

14: 2d c0 rjmp .+90 ; 0x70

16: 2c c0 rjmp .+88 ; 0x70

18: 2b c0 rjmp .+86 ; 0x70

0000001a <__ctors_start>:

1a: f2 00 .word 0x00f2

1c: 28 01 movw r4, r16

0000001e <__ctors_end>:

1e: f8 00 .word 0x00f8

20: 2e 01 movw r4, r28

00000022 <__dtors_end>:

22: 11 24 eor r1, r1

24: 1f be out 0x3f, r1 ; 63

26: cf e5 ldi r28, 0x5F ; 95

28: d2 e0 ldi r29, 0x02 ; 2

2a: de bf out 0x3e, r29 ; 62

2c: cd bf out 0x3d, r28 ; 61

0000002e <__do_copy_data>:

2e: 10 e0 ldi r17, 0x00 ; 0

30: a0 e6 ldi r26, 0x60 ; 96

32: b0 e0 ldi r27, 0x00 ; 0

34: ee e8 ldi r30, 0x8E ; 142

36: f2 e0 ldi r31, 0x02 ; 2

38: 03 c0 rjmp .+6 ; 0x40

0000003a <.do_copy_data_loop>:

3a: c8 95 lpm

3c: 31 96 adiw r30, 0x01 ; 1

3e: 0d 92 st X+, r0

00000040 <.do_copy_data_start>:

40: a8 3e cpi r26, 0xE8 ; 232

42: b1 07 cpc r27, r17

44: d1 f7 brne .-12 ; 0x3a

43

00000046 <__do_clear_bss>:

46: 11 e0 ldi r17, 0x01 ; 1

48: a8 ee ldi r26, 0xE8 ; 232

4a: b0 e0 ldi r27, 0x00 ; 0

4c: 01 c0 rjmp .+2 ; 0x50

0000004e <.do_clear_bss_loop>:

4e: 1d 92 st X+, r1

00000050 <.do_clear_bss_start>:

50: a5 30 cpi r26, 0x05 ; 5

52: b1 07 cpc r27, r17

54: e1 f7 brne .-8 ; 0x4e

56: 0d d0 rcall .+26 ; 0x72

00000058 <__do_global_ctors>:

58: 10 e0 ldi r17, 0x00 ; 0

5a: ce e1 ldi r28, 0x1E ; 30

5c: d0 e0 ldi r29, 0x00 ; 0

5e: 04 c0 rjmp .+8 ; 0x68

00000060 <.do_global_ctors_loop>:

60: 22 97 sbiw r28, 0x02 ; 2

62: fd 2f mov r31, r29

64: ec 2f mov r30, r28

66: 02 d1 rcall .+516 ; 0x26c

00000068 <.do_global_ctors_start>:

68: ca 31 cpi r28, 0x1A ; 26

6a: d1 07 cpc r29, r17

6c: c9 f7 brne .-14 ; 0x60

6e: c6 c0 rjmp .+396 ; 0x1fc

00000070 <__bad_interrupt>:

70: c7 cf rjmp .-114 ; 0x0

00000072 <_i_start>:

72: 01 d0 rcall .+2 ; 0x76

74: 08 95 ret

00000076 <_Z9epos_initPc>:

76: 0f 93 push r16

78: 1f 93 push r17

7a: cf 93 push r28

7c: df 93 push r29

7e: 80 e0 ldi r24, 0x00 ; 0

80: 90 e8 ldi r25, 0x80 ; 128

82: 90 93 e9 00 sts 0x00E9, r25

86: 80 93 e8 00 sts 0x00E8, r24

8a: 80 e0 ldi r24, 0x00 ; 0

8c: 90 e0 ldi r25, 0x00 ; 0

8e: 20 91 04 80 lds r18, 0x8004

92: 30 91 05 80 lds r19, 0x8005

96: 82 17 cp r24, r18

98: 93 07 cpc r25, r19

9a: 20 f4 brcc .+8 ; 0xa4

9c: 01 96 adiw r24, 0x01 ; 1

9e: 82 17 cp r24, r18

a0: 93 07 cpc r25, r19

a2: e0 f3 brcs .-8 ; 0x9c

a4: c0 e6 ldi r28, 0x60 ; 96

a6: d0 e0 ldi r29, 0x00 ; 0

a8: 0c 2f mov r16, r28

aa: 1d 2f mov r17, r29

ac: 0c 57 subi r16, 0x7C ; 124

ae: 1f 4f sbci r17, 0xFF ; 255

b0: e9 91 ld r30, Y+

b2: f9 91 ld r31, Y+

b4: 30 97 sbiw r30, 0x00 ; 0

b6: 21 f4 brne .+8 ; 0xc0

b8: 0c 17 cp r16, r28

ba: 1d 07 cpc r17, r29

bc: c8 f7 brcc .-14 ; 0xb0

44

be: 06 c0 rjmp .+12 ; 0xcc

c0: 80 91 e8 00 lds r24, 0x00E8

c4: 90 91 e9 00 lds r25, 0x00E9

c8: 09 95 icall

ca: f6 cf rjmp .-20 ; 0xb8

cc: 80 e0 ldi r24, 0x00 ; 0

ce: 90 e0 ldi r25, 0x00 ; 0

d0: df 91 pop r29

d2: cf 91 pop r28

d4: 1f 91 pop r17

d6: 0f 91 pop r16

d8: 08 95 ret

000000da <_ZN6System4AVR84initEPNS_11System_InfoE>:

da: 80 e0 ldi r24, 0x00 ; 0

dc: 90 e0 ldi r25, 0x00 ; 0

de: 08 95 ret

000000e0 <_ZN6System17AT90S8515_Display4initEPNS_11System_InfoE>:

e0: 80 e0 ldi r24, 0x00 ; 0

e2: 90 e0 ldi r25, 0x00 ; 0

e4: 08 95 ret

000000e6 <_ZN6System12AT90S8515_IC4initEPNS_11System_InfoE>:

e6: 80 e0 ldi r24, 0x00 ; 0

e8: 90 e0 ldi r25, 0x00 ; 0

ea: 08 95 ret

000000ec <_ZN6System9AT90S85154initEPNS_11System_InfoE>:

ec: 80 e0 ldi r24, 0x00 ; 0

ee: 90 e0 ldi r25, 0x00 ; 0

f0: 08 95 ret

000000f2 <_ZN6System8AVR8_MMU4initEPNS_11System_InfoE>:

f2: 80 e0 ldi r24, 0x00 ; 0

f4: 90 e0 ldi r25, 0x00 ; 0

f6: 08 95 ret

000000f8 <_ZN6System15AT90S8515_Timer4initEPNS_11System_InfoE>:

f8: 80 e0 ldi r24, 0x00 ; 0

fa: 90 e0 ldi r25, 0x00 ; 0

fc: 08 95 ret

000000fe <_ZN6System8AVR8_TSC4initEPNS_11System_InfoE>:

fe: 80 e0 ldi r24, 0x00 ; 0

100: 90 e0 ldi r25, 0x00 ; 0

102: 08 95 ret

00000104 <_ZN6System3Imp16Exclusive_Thread4initEPNS_11System_InfoE>:

104: cf 93 push r28

106: df 93 push r29

108: cd b7 in r28, 0x3d ; 61

10a: de b7 in r29, 0x3e ; 62

10c: 27 97 sbiw r28, 0x07 ; 7

10e: 0f b6 in r0, 0x3f ; 63

110: f8 94 cli

112: de bf out 0x3e, r29 ; 62

114: 0f be out 0x3f, r0 ; 63

116: cd bf out 0x3d, r28 ; 61

118: f9 2f mov r31, r25

11a: e8 2f mov r30, r24

11c: 42 ef ldi r20, 0xF2 ; 242

11e: 50 e0 ldi r21, 0x00 ; 0

120: 2c 2f mov r18, r28

122: 3d 2f mov r19, r29

124: 2f 5f subi r18, 0xFF ; 255

126: 3f 4f sbci r19, 0xFF ; 255

128: e2 5b subi r30, 0xB2 ; 178

12a: ff 4f sbci r31, 0xFF ; 255

12c: 60 81 ld r22, Z

12e: 71 81 ldd r23, Z+1 ; 0x01

130: b3 2f mov r27, r19

132: a2 2f mov r26, r18

45

134: 11 96 adiw r26, 0x01 ; 1

136: 80 91 fb 00 lds r24, 0x00FB

13a: 88 23 and r24, r24

13c: 19 f4 brne .+6 ; 0x144

13e: 81 e0 ldi r24, 0x01 ; 1

140: 80 93 fb 00 sts 0x00FB, r24

144: 80 91 03 01 lds r24, 0x0103

148: 90 91 04 01 lds r25, 0x0104

14c: 00 97 sbiw r24, 0x00 ; 0

14e: 71 f4 brne .+28 ; 0x16c

150: e0 91 e8 00 lds r30, 0x00E8

154: f0 91 e9 00 lds r31, 0x00E9

158: e0 5b subi r30, 0xB0 ; 176

15a: ff 4f sbci r31, 0xFF ; 255

15c: 80 81 ld r24, Z

15e: 91 81 ldd r25, Z+1 ; 0x01

160: 8e 83 std Y+6, r24 ; 0x06

162: 9f 83 std Y+7, r25 ; 0x07

164: 90 93 04 01 sts 0x0104, r25

168: 80 93 03 01 sts 0x0103, r24

16c: 12 96 adiw r26, 0x02 ; 2

16e: 8d 93 st X+, r24

170: 9c 93 st X, r25

172: 13 97 sbiw r26, 0x03 ; 3

174: 80 50 subi r24, 0x00 ; 0

176: 91 40 sbci r25, 0x01 ; 1

178: 90 93 04 01 sts 0x0104, r25

17c: 80 93 03 01 sts 0x0103, r24

180: 81 50 subi r24, 0x01 ; 1

182: 9f 4f sbci r25, 0xFF ; 255

184: f3 2f mov r31, r19

186: e2 2f mov r30, r18

188: 81 83 std Z+1, r24 ; 0x01

18a: 92 83 std Z+2, r25 ; 0x02

18c: 81 81 ldd r24, Z+1 ; 0x01

18e: 92 81 ldd r25, Z+2 ; 0x02

190: 6e 83 std Y+6, r22 ; 0x06

192: 7f 83 std Y+7, r23 ; 0x07

194: 85 e0 ldi r24, 0x05 ; 5

196: b5 2f mov r27, r21

198: a4 2f mov r26, r20

19a: 01 90 ld r0, Z+

19c: 0d 92 st X+, r0

19e: 8a 95 dec r24

1a0: e1 f7 brne .-8 ; 0x19a

1a2: 41 15 cp r20, r1

1a4: 51 05 cpc r21, r1

1a6: 21 f0 breq .+8 ; 0x1b0

1a8: 95 2f mov r25, r21

1aa: 84 2f mov r24, r20

1ac: 01 96 adiw r24, 0x01 ; 1

1ae: 02 c0 rjmp .+4 ; 0x1b4

1b0: 95 2f mov r25, r21

1b2: 84 2f mov r24, r20

1b4: 90 93 f1 00 sts 0x00F1, r25

1b8: 80 93 f0 00 sts 0x00F0, r24

1bc: 80 91 f3 00 lds r24, 0x00F3

1c0: 90 91 f4 00 lds r25, 0x00F4

1c4: 80 91 f3 00 lds r24, 0x00F3

1c8: 90 91 f4 00 lds r25, 0x00F4

1cc: 80 e0 ldi r24, 0x00 ; 0

1ce: 90 e0 ldi r25, 0x00 ; 0

1d0: 27 96 adiw r28, 0x07 ; 7

1d2: 0f b6 in r0, 0x3f ; 63

1d4: f8 94 cli

1d6: de bf out 0x3e, r29 ; 62

1d8: 0f be out 0x3f, r0 ; 63

1da: cd bf out 0x3d, r28 ; 61

1dc: df 91 pop r29

1de: cf 91 pop r28

1e0: 08 95 ret

000001e2 <_Z41__static_initialization_and_destruction_0ii>:

46

1e2: 08 95 ret

000001e4 <_GLOBAL__I__ZN6System2siE>:

1e4: 6f ef ldi r22, 0xFF ; 255

1e6: 7f ef ldi r23, 0xFF ; 255

1e8: 81 e0 ldi r24, 0x01 ; 1

1ea: 90 e0 ldi r25, 0x00 ; 0

1ec: fa df rcall .-12 ; 0x1e2

1ee: 08 95 ret

000001f0 <_GLOBAL__D__ZN6System2siE>:

1f0: 6f ef ldi r22, 0xFF ; 255

1f2: 7f ef ldi r23, 0xFF ; 255

1f4: 80 e0 ldi r24, 0x00 ; 0

1f6: 90 e0 ldi r25, 0x00 ; 0

1f8: f4 df rcall .-24 ; 0x1e2

1fa: 08 95 ret

000001fc <main>:

1fc: cf e5 ldi r28, 0x5F ; 95

1fe: d2 e0 ldi r29, 0x02 ; 2

200: de bf out 0x3e, r29 ; 62

202: cd bf out 0x3d, r28 ; 61

204: 8f ef ldi r24, 0xFF ; 255

206: 87 bb out 0x17, r24 ; 23

208: 81 e0 ldi r24, 0x01 ; 1

20a: 88 bb out 0x18, r24 ; 24

20c: fd cf rjmp .-6 ; 0x208

0000020e <_Z41__static_initialization_and_destruction_0ii>:

20e: cf 93 push r28

210: df 93 push r29

212: cd b7 in r28, 0x3d ; 61

214: de b7 in r29, 0x3e ; 62

216: 22 97 sbiw r28, 0x02 ; 2

218: 0f b6 in r0, 0x3f ; 63

21a: f8 94 cli

21c: de bf out 0x3e, r29 ; 62

21e: 0f be out 0x3f, r0 ; 63

220: cd bf out 0x3d, r28 ; 61

222: 28 2f mov r18, r24

224: 39 2f mov r19, r25

226: 6f 5f subi r22, 0xFF ; 255

228: 7f 4f sbci r23, 0xFF ; 255

22a: 49 f4 brne .+18 ; 0x23e

22c: 21 30 cpi r18, 0x01 ; 1

22e: 31 05 cpc r19, r1

230: 31 f4 brne .+12 ; 0x23e

232: 80 91 f7 00 lds r24, 0x00F7

236: 90 91 f8 00 lds r25, 0x00F8

23a: 89 83 std Y+1, r24 ; 0x01

23c: 9a 83 std Y+2, r25 ; 0x02

23e: 22 96 adiw r28, 0x02 ; 2

240: 0f b6 in r0, 0x3f ; 63

242: f8 94 cli

244: de bf out 0x3e, r29 ; 62

246: 0f be out 0x3f, r0 ; 63

248: cd bf out 0x3d, r28 ; 61

24a: df 91 pop r29

24c: cf 91 pop r28

24e: 08 95 ret

00000250 <_GLOBAL__I__ZN6System3Imp20Address_Space_Common12_sys_segmentE>:

250: 6f ef ldi r22, 0xFF ; 255

252: 7f ef ldi r23, 0xFF ; 255

254: 81 e0 ldi r24, 0x01 ; 1

256: 90 e0 ldi r25, 0x00 ; 0

258: da df rcall .-76 ; 0x20e

25a: 08 95 ret

0000025c <_GLOBAL__D__ZN6System3Imp20Address_Space_Common12_sys_segmentE>:

25c: 6f ef ldi r22, 0xFF ; 255

25e: 7f ef ldi r23, 0xFF ; 255

47

260: 80 e0 ldi r24, 0x00 ; 0

262: 90 e0 ldi r25, 0x00 ; 0

264: d4 df rcall .-88 ; 0x20e

266: 08 95 ret

00000268 <__tablejump2__>:

268: ee 0f add r30, r30

26a: ff 1f adc r31, r31

0000026c <__tablejump__>:

26c: c8 95 lpm

26e: 31 96 adiw r30, 0x01 ; 1

270: 0f 92 push r0

272: c8 95 lpm

274: 0f 92 push r0

276: 08 95 ret

00000278 <__do_global_dtors>:

278: 10 e0 ldi r17, 0x00 ; 0

27a: ce e1 ldi r28, 0x1E ; 30

27c: d0 e0 ldi r29, 0x00 ; 0

27e: 04 c0 rjmp .+8 ; 0x288

00000280 <.do_global_dtors_loop>:

280: fd 2f mov r31, r29

282: ec 2f mov r30, r28

284: f3 df rcall .-26 ; 0x26c

286: 22 96 adiw r28, 0x02 ; 2

00000288 <.do_global_dtors_start>:

288: c2 32 cpi r28, 0x22 ; 34

28a: d1 07 cpc r29, r17

28c: c9 f7 brne .-14 ; 0x280

Disassembly of section .data:

00800060 <_ZN6System10init_tableE>:

...

800068: 00 00 nop

80006a: 6d 00 .word 0x006d

...

800074: 00 00 nop

800076: 7f 00 .word 0x007f

...

800080: 00 00 nop

800082: 79 00 .word 0x0079

...

80008c: 00 00 nop

80008e: 76 00 .word 0x0076

...

80009c: 73 00 .word 0x0073

...

8000aa: 7c 00 .word 0x007c

...

8000c0: 00 00 nop

8000c2: 70 00 .word 0x0070

8000c4: 00 00 nop

8000c6: 82 00 .word 0x0082

...

008000e6 <_ZN6System7machineE>:

8000e6: ec 00 .word 0x00ec

48

ANNEX B -- Article

B.SC PROGRAM IN COMPUTER SCIENCES 1

The EPOS System Supporting Wireless Sensor
Networks Applications

Lucas Wanner
lucas@inf.ufsc.br

Abstract— Pervasing micro-sensing through Wireless Sensor
Networks is revolutionizing the way we understand and manage
complex physical systems from animal habitats to industrial
plants. Composed by thousands of small devices with very limited
resources, sensor networks are subject to novel system problems
and constraints.

Operating Systems for WSN must implement abstractions to
interface with digital and analog sensors, provide a communica-
tion stack, and make efficient use of the system’s limited energy
resources. The EPOS operating system aims to give each dedica-
ted application adequate runtime support, using the Application
Oriented System Design domain engineering technique to produce
a component-based operating system that can be automatically
tailored according to the needs of particular applications.

This report presents an overview of Sensor Network techno-
logies and system architecture and a port of the EPOS system
for the AVR microcontroller architecture, used in many Wireless
Sensor Networks research platforms.

Resumo— O micro-sensoreamento pervasivo através de Redes
de Sensores sem Fios está revolucionando a maneira como
compreendemos e gerenciamos sistemas fı́sicos complexos desde
habitats de animais até plantas industriais. Compostas por
milhares de pequenos dispositivos com recursos muito limitados,
redes de sensores estão sujeitas a novos problemas e restrições
de sistema.

Sistemas Operacionais para Redes de Sensores devem imple-
mentar abstrações que tratem de sensores analógicos e digitais,
devem prover uma pilha de protocolos para comunicação e
fazer uso eficiente da capacidade limitada de energia do sistema.
O Sistema Operacional EPOS tem como objetivo dar a cada
aplicação dedicada suporte de runtime adequado, usando a
técnica de engenharia de domı́nio Design de Sistema Orientado
à Aplicação para produzir um sistema operacional baseado
em componentes que pode ser automaticamente configurado de
acordo com as necessidade de aplicações especı́ficas.

Este artigo apresenta uma visão geral de tecnologias e arqui-
tetura de sistema de Redes de Sensores e apresenta um porte
do sistema EPOS para a arquitetura AVR, usada em várias
plataformas de Redes de Sensores sem Fios.

Keywords— Wireless Sensor Networks, Application Oriented
Operating Systems

I. INTRODUCTION

Wireless Sensor Networks is an emerging technology that
enables information gathering in several different scenarios
ranging from wildlife monitoring to industrial and military
applications. A Wireless Sensor Network consists of groups
of sensor nodes using wireless links to perform distributed
sensing tasks [22]. These nodes are typically provided with
an embedded microprocessor and a very small amount of
memory.

While Wireless Sensor Networks (WSN) hardware designs
are evolving into stable, commercially available platforms,

the Hardware/Software boundary in WSN is a topic of open
research. When available, the Operating Systems for WSN are,
according to their own creators, too simplistic and unsuited for
non-expert programmers [17].

This paper presents the first port of the EPOS1 system to the
AVR family of microcontrollers, an 8-bit Harvard Architecture
widely used in embedded systems and Wireless Sensor Nodes.

The EPOS system aims to give each dedicated application
adequate runtime support without having to design a new
system for each application and without requiring application
programmers to undergo complicated configuration procedu-
res, using the Application Oriented System Design [7] domain
engineering technique to produce a component-based opera-
ting system that can be automatically tailored according to the
needs of particular applications.

A. Presentation Overview

The first part of this paper presents an overview of Wire-
less Sensor Network technologies, hardware, communcation
models and applications; as well as the the AVR microcon-
troller architecture, widely used in Wireless Sensor Network
hardware designs.

The second part presents the EPOS system and an imple-
mentation of it’s initialization system to the AVR platform.

Finally the last part presents the conclusions of this paper,
and suggests future related research projects.

II. WIRELESS SENSOR NETWORKS

In the past few years the advances in miniaturization and
low-cost, low-power design have led to extensive research in
large-scale networks of small, wireless, low-power, unattended
microsensors [2], [14]. These microsensors are equipped with
a sensor module (e.g. acoustic, light, temperature, magnetic,
image sensor), capable of sensing some quantity about the
environment, a digital processor for processing the signals
from the sensors and performing operating system, application
and network functions, a radio module for communication and
a battery to provide energy for operation [12]. Each sensor
obtains a “view” of the environment, and sends the view data
to a distant base-station, through which an end-user can access
the information.

Wireless sensor networks enable the monitoring of a variety
of possibly inhospitable environments that include home secu-
rity, machine-failure diagnosis, chemical/biological detection,

1EPOS: Embedded Parallel Operating System

2 B.SC PROGRAM IN COMPUTER SCIENCES

medical and wild habitat monitoring [12], [18]. These applica-
tions require reliable, accurate, fault-proof and possibly real-
time monitoring. Meanwhile, the low energy and processing
capacities of the nodes require efficient and energy-aware
operation. Many researchers envision driving the networked
sensor down to microscopic scale, creating smart environments
and devices, powered by ambient energy [16] and used in
many smart space scenarios. While it is acknowledged that
energy consumption restrictions will not likely allow great
processing power in this “smart dust”, a wireless grid interface
with more powerful computers could easily fulfill connectivity,
storage and processing needs in the network nodes.

This section describes the basic microsensor node archi-
tecture, the communication principles of Wireless Sensor
Networks (WSN), and WSN applications.

A. Wireless Sensor Nodes

In a Wireless Sensor Network, a Sensor Node is responsible
for the lowest level of the sensing application. Several nodes
are placed in areas of interrest, and each sensor node collects
data from it’s immediate surroundings. The collected data is
then pre-processed in the node, and forwarded to a base station
through the network formed with all the deployed nodes.

In a Sensor Node, the computational module is a program-
mable unit that provides computation, storage and bidirectional
communication with other nodes in the system. This module
interfaces with the analog and digital sensors in the node,
performs basic signal processing and dispatches the data
according to the application’s needs [18]. The other modules
in a Wireless Sensor Node are comprised by sensors and a
radio for communication.

While several [2], [20], [24] platforms have been proposed
and implemented for Wireless Sensor Nodes, the most popular
and representative are the U.C. Berkeley’s Mote2 architectures
[13], [21]. These are “current generation” devices constructed
from off-the-shell components that have many of the key
characteristics of the general class of Wireless Sensor Nodes
[13]. They provide a microcontroller with internal program
memory, sensor board interfaces, a low power radio module
and a non-volatile memory chip.

The processor within the Mica2 is an Atmel Atmega128
AVR. AVR is an 8-Bit Harvard architecture, with separete
instruction and data memory. In the motes, the AVR interfaces
with four hardware blocks (Radio, LEDS, Flash Memory and
Sensor board / Programming interface).

B. Communication in Wireless Sensor Networks

The Network component of Wireless Sensor Networks
presents a series of new design challenges and is a topic of
open research.

Sensor Networks must be power-aware. Most current
network protocols are conservative only in their use of
bandwidth. In a sensor node, all communication – including

2Mote, n. A small particle, as of floating dust; anything proverbially small;
a speck: “The little motes in the sun do ever stir, though there be no wind”
(Bacon).

passive listening – will have a significant effect on the node’s
limited energy reserves.

Sensor Networks are highly dynamic. Over time, sensors
may fail or new sensors may be added. Sensors are likely to
experience changes in their position and reachability. These
changes make static configuration unacceptable.

Sensor Networks must be self-configuring. A single human
may be responsible for thousands of nodes in a dense sen-
sor network, and a design where each sensor node requires
individual attention would be impractical.

All of these characteristics, presented in [14] and discussed
at length in [5], [11], [25], may affect many aspects of the sys-
tem’s design, including routing and addressing mechanisms,
naming services, security mechanisms and so forth.

C. Sensor Network Applications
Sensor networks may consist of many different types of

sensors such as seismic, low sampling rate magnetic, thermal,
visual, infrared, acoustic and radar, which are able to monitor a
wide variety of ambient conditions. Sensor nodes can be used
for continuous sensing, event detection, location sensing, and
local control of actuators [1]. The concept of pervasing micro-
sensing through Wireless Sensor Networks promise many new
application areas. This section presents and categorizes the
applications of WSN into military, environment, health, and
commercial areas.

1) Military applications: Wireless sensor networks can
be an integral part of military command, control, commu-
nications, computing, intelligence, surveillance, reconnais-
sance and targeting (C4ISRT) systems. The rapid deployment,
self-organization and fault tolerance characteristics of sensor
networks make them a very promising sensing technique for
military C4ISRT [1].

Since sensor networks are based on the dense deployment
of disposable and low-cost sensor nodes, destruction of some
nodes by hostile actions does not affect a military operation as
much as the destruction of a traditional sensor, which makes
sensor networks concept a better approach for battlefields.
Some of the military applications of sensor networks are moni-
toring friendly forces, equipment and ammunition; battlefield
surveillance; reconnaissance of opposing forces and terrain;
targeting; battle damage assessment; and nuclear, biological
and chemical attack detection and reconnaissance [1].

2) Environmental applications: Environmental and habitat
monitoring is a driving field for wireless sensor networks
[3]. It’s applications include tracking the movements of
small animals; monitoring environmental conditions; chemi-
cal/biological detection; precision agriculture; forest fire detec-
tion; meteorological or geophysical research; flood detection;
bio-complexity mapping of the environment; and pollution
study.

3) Health applications: Some of the health applications
for sensor networks are providing interfaces for the disabled;
integrated patient monitoring; drug administration in hospitals;
monitoring the movements and internal processes of insects or
other small animals; telemonitoring of human physiological
data; and tracking and monitoring doctors and patients inside
a hospital [1].

FEDERAL UNIVERSITY OF SANTA CATARINA 3

4) Commercial applications: Commercial applications for
WSN include monitoring material fatigue; managing inven-
tory; monitoring product quality; constructing smart office
spaces; robot control and guidance in automatic manufacturing
environments; interactive toys; factory process control and
automation; smart structures with sensor nodes embedded
inside; machine diagnosis; transportation; factory instrumen-
tation; local control of actuators; and vehicle tracking and
detection [1].

III. THE AVR ARCHITECTURE

AVR is a widely used family of 8-bit RISC microcontrol-
lers from Atmel. Usually deployed in the form of MCUs
(Microprocessor Control Units3), the AVR provides good
performance at low cost and low power consumption in a
simple Harvard Architecture4, making it the natural choice
for Wireless Sensor Nodes processing and control.

A. Architectural Overview

The AVR CPU resembles most RISC processors but has
smaller registers. The core features 32 identical 8-bit registers
that can hold addresses or data. Since 8-bit address pointers are
fairly worthless even in an 8-bit device, the last six registers
can be used in pairs, as address pointers. Dubbed X, Y, and
Z, these three meta-registers can be used for any load or store
operation [23]. All operations are register-toregister; the chip
follows a strict load/store model.

1) General Purpuse Registers: The AVR’s fast-access Re-
gister file contains 32 x 8-bit general purpose registers with a
single clock cycle access time, allowing sincle-cycle Arithme-
tic Logic Unit (ALU) operation. Six of the 32 registers can be
used as three 16-bit indirect address register pointers for Data
Space addressing.

The register file is mapped into the data address space. The
first 32 bytes of data memory, $0x0000 – $0x001F, correspond
to registers R0-R31.

2) I/O Registers: The AVR’s 64 I/O Registers are memory-
mapped into addresses $0x0020 – $005F. These registers
include status, interrupt and timer control, stack pointer, GPIO
(General-Pourpose Input and Output) and SPI (Serial Program-
ming Interface) and UART registers.

3) Data Memory: In the AT90S8515 MCU, the first 96
memory locations address the Register file and I/O memory.
The next 512 locations address the internal data SRAM. An
optional external data SRAM can be placed in the same SRAM
memory space, filling the AVR’s 64K address space.

4) Program Memory: In the AT90S8515 MCU contains 8K
bytes of Programmable Flash Memory for program storage.
Since all instructions are 16- or 32-bit words, the Flash is
organized as 4Kx16. The AT90S8515 Program Counter is
12 bits wide, thus addressing the 4096 program memory
addresses.

3In an MCU, the processor, memory and I/O all reside in the same physical
IC (integrated circuit).

4A Harvard Architecture provides separate momories and buses for program
and data.

In early AVR models, such as the AT90S8515, the program
memory can only be updated by writing a full binary image
to the flash. Once the program data is downloaded, no further
updates of the flash are possible, as there is no instruction
capable of writing to the program memory. These devices can
be programmed serially, via ISP (In-System Programming) or
parallelly, via High-Voltage Programming.

Recent AVR MCUs, such as the Atmega128, used in the
Mica Motes, provide a Store Program Memory SPM) instruc-
tion capable of erasing and writing a page in the program
memory.

In the MCUs where the SPM instruction is available, the
Flash memory is divided into two sections, one Application
section and one Boot Loader section. The SPM instruction can
only be executed from the Boot Loader section [4]. The Flash
memory is divided into pages containing 32, 64, or 128 words
each.

B. Serial Peripheral Interface

Serial Peripheral Interface (SPI) is a serial bus standard
established by Motorola and supported in silicon products
from various manufacturers. It is a synchronous serial data
link that operates in full duplex (signals carrying data in both
directions simultaneously) [15].

Devices communicate using a master/slave relationship, in
which the master initiates the data frame. When the master
generates a clock and selects a slave device, data may be
transferred in both directions simultaneously.

SPI specifies four signals: clock (SCLK); master data
output, slave data input (MOSI); master data input, slave data
output (MISO); and slave select (SS). SCLK is generated
by the master and input to all slaves. MOSI carries data
from master to slave. MISO carries data from slave back to
master. A slave device is selected when the master asserts its
SS signal. If multiple slave devices exist, the master generates
a separate slave select signal for each slave.

The AT90S8515 provides a fully functional SPI implemen-
tation, capable of working in either master or slave mode and
controlled by I/O memory mapped registers.

C. UART

The AT90S8515 MCU provides a full-duplex Universal
Asynchronous Receiver/Transmitter (UART), featuring:

• Baud Rate generator
• Noise Filtering
• Overrun detection
• Three Separate Interrupts on TX Complete, TX Data

Register Empty and RX Complete.
Data transmission and reception, as well as UART setup is

controlled by I/O memory mapped registers.

IV. GPIO

The AT90S8515 architecture provides four bi-directional
I/O ports. Three I/O memory address locations are allocated
for each port, one each for the Data Register, PORTx, Data
Direction Register, DDRx, and the Port x Input Pins, PINx.

4 B.SC PROGRAM IN COMPUTER SCIENCES

The last enables access to the physical value on each Port x
pin. The Port x Input Pins address is read only, while the Data
Register and the Data Direction Register are read/write. All
Port x Pins can be used for General Purpose Input or Output
(GPIO).

A. Sleep Modes

AVR microcontrollers provide several sleep modes. The
purpose of these modes is to provide a way of suspen-
ding program execution when necessary, thereby reducing
power consumption [6]. The Sleep Modes available in the
AT90S8515 MCU are (in order from maximal to minimal
power consumption):

• Idle mode
The idle mode stops the CPU but leaves peripherals
(UART, Analog Comparator etc.) running. The MCU will
continue program execution immediately after waking up
from Idle mode.

• Powersave mode
This mode is identical to the Powerdown mode, with one
exception: The Timer Crystal Oscillator will continue to
operate and the Timer can continue to count. The device
can wake up from either a Timer Overflow or Output
Compare event.

• Powerdown mode
In this mode, all Oscillators are stopped while the Exter-
nal Level interrupts and the Watchdog continue operating.
Only an External Reset, a Watchdog Reset or an External
Level interrupt can wake up the MCU.

The device is sent into sleep mode by selecting the desired
sleep mode in the MCU Control Register, enabling interrupts
that should be able to wake the MCU up from sleep and
executing a SLEEP intruction.

V. EPOS INITIALIZATION IN THE AVR

The EPOS system was born in 1997 as a project to ex-
periment with the concepts and mechanisms of application-
oriented system design [7]. EPOS is thus an intrinsically
application-oriented operating system, and today is evolving
into a fully functional, multi-platform, very high perfor-
mance OS. Current results include implementations for high-
performance Clusters of Commodity Workstations based on
Myrinet Networks [8]–[10] and ports to the PowerPC (32-bit)
and H8 (8-bit) architectures [19]. EPOS aims to deliver functi-
onality (giving the application it’s necessary runtime support),
customizability (being tailored to specific applications) and
efficiency (making resources available to the application with
the lowest possible overhead) [7].

A. EPOS System Architecture

EPOS relies on System Abstractions, Hardware Mediators
and Aspects to ensure component reusability. Abstractions
describe scenario-independent functionalities, are widely reu-
sable and represent most of the components in the system.
A hardware mediator is a system-dependent abstraction of

elements of the hardware platform that are used by sys-
tem abstractions and scenario aspects [7]. Aspects provide
configurable functionalities for applications, such as sharing,
protection and atomicity.

1) The Setup Utility for the AVR: EPOS Setup Utility is
responsible for building an elementary execution context for
the OS. It runs after the bootstrap and previous to the Init
Utility.

In the AVR, the bootstrap simply disables interrupts and
calls setup, passing the SysInfo Structure as a parameter. The
SysInfo structure describes the relevant characteristics of the
forthcoming EPOS configuration.

As the Setup utility initiates, it proceeds with hardware
setup, updating and completing SysInfo, including information
about the physical resources configured, a memory map des-
cribing how the operating system has been loaded, the node’s
logical id, etc [7].

In the AVR, Setup is mainly responsible for setting up the
interrupt controller, checking system integrity, setting up the
Init entry point and setting up system data structures.

2) The Init Utility: EPOS init is a routine that has plain
access to the address space of the operating system, thus being
able to invoke system operations. The initialization procedure
carried out by the init utility consists in checking the traits
of each abstraction to determine whether it has been included
in the current system configuration and invoking the init class
method for present abstractions [7].

After calling the init class method for all present abs-
tractions, the init utility invokes EPOS operations, which by
now are fully operational, to create the first process. If the
dedicated application running on EPOS is executed by a
single process, then the process created by the init utility is
the application’s unique process. Otherwise, this process is
a loader that subsequently creates application processes in a
multitasking environment [7].

3) Overview of EPOS initialization: After loading the boot
image, which includes a preliminary system description (Sy-
sInfo), the bootstrap invokes the setup utility to configure the
hardware platform. Setup then utility builds an elementary
memory model, configures required devices, loads EPOS,
loads and activates the init utility. The init utility invokes the
init class method of every abstraction included in the system to
initialize its logical structure. It finishes loading the executable
provided in the boot image to create the first process [7].

4) Considerations for the AVR Architecture: Having being
designed bearing in mind a Von Neuman, self programming
architecture, the EPOS initialization process has to undergo
some changes when ported to a device such as the AT90S8515
AVR MCU, a Harvard Architecture unable of changing pro-
gram memory at execution time.

In a regular system setup, the EPOS initialization system is
eliminated after execution, and the resources it occupied are
returned to the system’s pool of free resources. This is not
possible in the AT90S8515, since program memory cannot be
altered, and therefore freed, at execution time. Since processes
cannot be dynamically loaded at execution time, application
pointers must be pre-adjusted in the binary image uploaded to
the MCU.

FEDERAL UNIVERSITY OF SANTA CATARINA 5

The original structure of the EPOS image must also be
altered bearing in mind two different address spaces and
buses. Data structures, such as the SysInfo must now be
placed together with the code and copied to RAM memory
at initialization time.

Recent AVRs, such as the Atmega128, enable the possibility
of dynamically loading code at boot time. This is done by
writing code memory pages based on data from RAM memory.
This process makes use of the SPM (Store Program Memory)
instruction, which can only be executed from the Boot Loader
section of Program Memory. Such AVR MCUs would enable
the EPOS initialization system (bootstrap, setup and init) to
be executed from the Boot Loader section, and freeing this
section for application code after execution.

VI. CONCLUSIONS AND FURTHER RESEARCH

Wireless Sensor Networks research and application is one
of the most promising fields in Computer Sciences today, and
presents a series of new challenges, among which adequate
runtime support for applications is a key issue.

This research represented the first effort in the implemen-
tation functional release of the EPOS system for the UCB
Wireless Sensor Network Plattform (Mica Motes), the “state-
of-the-art” hardware platform for WSN. While the Motes
group at Berkeley provides it’s own Operating System for
WSN (TinyOS), it does not provide the advanced functionality
nor the Application Oriented design EPOS does. As WSN ap-
plications evolve, TinyOS will provide increasingly inadequate
support, while EPOS can be easily configured and expanded
in order to support the application programmers needs. The
highly portable nature of EPOS also ensures reusability, both
in system and application levels, as new hardware platforms
emerge.

The port of a fully functional EPOS system for the Mica
Platforms is a work in progress. Current results present
a functional EPOS image of 1.3 KB for the AT90S8515
MCU (The object code for this image is presented in Annex
A). Recent fund grants from FUNGRAD/UFSC will alow
LISHA to acquire commercial Motes Kits, thus allowing
further development focused on hardware mediators for Sensor
Boards and Radio Transceivers and on the implementation of
Communication Systems.

Energy control is one of the fundamental problems of
WSN, and the research and implementation of WSN energy
control mechanisms, including energy-aware communication
protocols is also on the “LISHA WSN” agenda.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
integrated network sensors. Computer Networks, 38(4):393422, 2002.

[2] G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser, and H. Marcy. Wireless
integrated network sensors: Low power systems on a chip, 1998.

[3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat monitoring: Application driver for wireless communications
technology, 2001.

[4] Atmel Corporation. AVR Application Note 109: Self Programming. San
Jose, California, 2003.

[5] David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk, and
Alec Woo. A network-centric approach to embedded software for tiny
devices. Lecture Notes in Computer Science, 2211, 2001.

[6] AVR Freaks. Design Note 003: AVR Sleep Modes, 2002.
[7] Antônio Augusto Fröhlich. Application-Oriented Operating Systems.

Number 17 in GMD Research Series. GMD - Forschungszentrum
Informationstechnik, Sankt Augustin, August 2001.

[8] Antônio Augusto Fröhlich, Philippe Olivier Alexander Navaux,
Sérgio Takeo Kofuji, and Wolfgang Schröder-Preikschat. Snow: a
parallel programming environment for clusters of workstations. In
Proceedings of the 7th German-Brazilian Workshop on Information
Technology, Maria Farinha, Brazil, September 2000.

[9] Antônio Augusto Fröhlich and Wolfgang Schröder-Preikschat. On
component-based communication systems for clusters of workstations.
ACM Applied Computing Review, 1(1):1–1, November 2001.

[10] Antônio Augusto Fröhlich, Gilles Pokam Tientcheu, and Wolfgang
Schröder-Preikschat. EPOS and Myrinet: Effective Communication
Support for Parallel Applications Running on Clusters of Commodity
Workstations. In Proceedings of 8th International Conference on High
Performance Computing and Networking, pages 417–426, Amsterdam,
The Netherlands, May 2000.

[11] John S. Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh
Govindan, Deborah Estrin, and Deepak Ganesan. Building efficient
wireless sensor networks with low-level naming. In Symposium on
Operating Systems Principles, pages 146–159, 2001.

[12] W. Heinzelman. Application-Specific Protocol Architectures for Wireless
Networks. PhD thesis, Massachusetts Institute of Technology, 2000.

[13] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler,
and Kristofer S. J. Pister. System architecture directions for networked
sensors. In Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[14] Deborah Estrin Jeremy Elson. An address-free architecture for dynamic
sensor networks.

[15] David Kalinsky and Roee Kalinsky. Introduction to serial peripheral
interface, 2003.

[16] John Kymissis, Clyde Kendall, Joseph A. Paradiso, and Neil Gershen-
feld. Parasitic power harvesting in shoes. In ISWC, pages 132–139,
1998.

[17] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks.
In International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, USA, Oct. 2002. To
appear.

[18] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler,
and John Anderson. Wireless sensor networks for habitat monitoring.
In ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA’02), Atlanta, GA, September 2002.

[19] Fauze Valério Polpeta and Antônio Augusto Fröhlich. Portability in
component-based systems. LISHA, 2004.

[20] Pico Radio Project. Pico radio –
http://bwrc.eecs.berkeley.edu/research/pico radio/.

[21] TinyOS Project. Tinyos hardware designs.
[22] Praveen Rentala, Ravi Musunuri, Shashidhar Gandham, and Udit Sa-

xena. Survey on sensor networks.
[23] Jim Turley. Atmel avr brings risc to 8-bit world. Microprocessor Report,

11(9), 1997.
[24] Brett Warneke and Sunil Bhave. Smart dust mote core architecture.
[25] Alec Woo and David E. Culler. A transmission control scheme for media

access in sensor networks. In Mobile Computing and Networking, pages
221–235, 2001.

