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Abstract. Finding a hard real-time feasible schedule is not trivial since this problem is
NP-hard in its general form. There are two general approaches for scheduling tasks:
runtime and pre-runtime scheduling. For many cases, runtime methods do not find a
feasible schedule even if such a schedule exists. Such situations often occurs when
the design model imposes intertask relations, such as precedence and exclusion rela-
tions. The method proposed in this work finds a pre-runtime scheduling, provided that
one exists, using state space exploration. The main problemwith such methods is the
space size, which can grow exponentially. This paper applies minimization methods on
the state space, and presents a depth-first search method on atimed labeled transition
system derived from the time Petri net model. This model is a compact and precise
representation of tasks, their relations and constraints.

1. Introduction

Embedded hard real-time systems are dedicated computer applications having to satisfy stringent
timing constraints, that is, they must guarantee that all tasks complete before their deadlines. A
failure to meet deadlines may have serious consequences such as resources damage or even loss of
human life. In order to meet this requirement, scheduling performs an important role. Although
we have proposed a method for scheduling in multiprocessorsarchitecture [Barreto et al., 2004],
in this paper the discussion is restricted to uniprocessor environment.

In real-time systems, there are two general approaches for scheduling tasks: runtime and
pre-runtime scheduling. Inruntime scheduling, schedules are computed on-line as tasks arrive,
using a priority-driven approach. However, there are situations where this approach is not able
of finding a feasible schedule, even when such schedule exists. On the other hand, in a pre-
runtime scheduling algorithm the schedule is computed entirely off-line, which can achieve 100%
processor utilization, and it can reduce context-switching. This approach is considered inflexible,
but it is not a concern if it is considered embedded systems.

This work usesstate space explorationsince it provides a complete automatic strategy for
verifying finite-state systems [Godefroid, 1994]. It consists in recursively checking all successor
states, starting in a given initial state, by executing all enabled action in each state. In spite of a
feasible schedule can be found using such strategy, it may belimited by the excessive size of its
state space. This problem comes up due to the analysis based on the interleaving of concurrent
activities. This exponential growth is known as thestate explosion problem[Godefroid, 1994,
Valmari, 1998]. This paper applies minimization methods onthe state space, and presents a depth-
first search algorithm for finding a feasible schedule on the minimized state space.

The rest of the paper is organized as follows: Section 2 showsrelated works. Section
3 presents the computational model syntax and semantics. Section 4 describes the task model.
Section 5 introduces the formal modeling methodology and Section 6 shows how to synthesize



pre-runtime schedules. Section 7 presents experimental results, explaining in more details an
unmanned ground vehicle case study. Finally, Section 8 shows some conclusions.

2. Related Work

Xu and Parnas [Xu and Parnas, 1990] present an algorithm thatfinds an optimal pre-runtime
schedule on a single processor for real-time process segments with release, deadlines, and ar-
bitrary exclusion and precedence relations, using a branch-an-bound algorithm. In spite of the im-
portance of this work, it does not presented real-world experimental results. Shepard and Gagné
[Shepard and Gagné, 1991] extended the work of Xu and Parnasby proposing an implicit enumer-
ation technique for dealing with multiprocessors, but as pointed out in [Abdelzaher and Shin, 1997],
the algorithm occasionally fails in finding existing feasible schedules, since it attempts to reduce
schedule lateness by modifying only the schedule of the processor running the latest segment.
Abdelzaher and Shin [Abdelzaher and Shin, 1999] proposed anextension to the Xu and Parnas’
pre-run-time scheduling algorithm in order to deal with distributed real-time systems. This algo-
rithm takes into account delays, precedence relations imposed by interprocess communications,
and considers many possibilities for improving the scheduling lateness at the cost of complexity.

Several authors also use Petri nets in scheduling theory (e.g. [Xu et al., 2002]). However,
they are only concerned with schedulability analysis, relying on a well-known priority policy,
which may not find feasible schedules if arbitrary precedence and exclusion relations are consid-
ered.

Comparing the proposed approach with previous works, it differs in the sense that: (1)
Previous works model thescheduling problem, not thesystem. This work uses a time Petri net
formalism for system’s modeling in order to find a feasible scheduling. Furthermore, the model
can also be used to synthesize predictable and timely scheduled code; and (2) Using Petri net
analysis techniques allows one to check several system properties, such as, reachability, deadlock-
freedom, boundedness, fairness, etc.

Although state space exploration is not new, at the best of our present knowledge, there is
no similar work that uses formal methods for modeling real-time systems with the aim of finding
a feasible pre-runtime scheduling. This work brings an important contribution since it opens up a
new possibility for analyzing a problem studied for many years.

3. Computational Model

The computational model syntax is given by a time Petri net [Merlin and Faber, 1976], which is
a Petri net [Murata, 1989] extended with time, and its semantics is given by its timed labeled
transition system.

A time Petri net (TPN) is a bipartite directed graph represented by a tupleTPN =
(P, T, F,W,m0, I). P (ordered set of places), andT (ordered set of transitions) are non-empty
disjoint sets and represent the two types of nodes in the graph. The edges are represented by
F ⊆ (P × T ) ∪ (T × P ), which is a flow relation.W : F → N represents the weight of the flow
relation (F ). A TPN markingmi is a vectormi ∈ N

|P |, andm0 is the initial marking. Finally,
I : T → N × N, represents the timing constraints, whereI(t) = (EFT (t), LFT (t)) ∀t ∈ T
andEFT (t) ≤ LFT (t). The lower and upper bound are called earliest and latest firing time,
respectively.

A set of enabled transitions is denoted by:ET (mi) = {t ∈ T | mi(pj) ≥ W (pj, t)},
∀pj ∈ P . C ∈ N

|ET (M)| is a clock vector, which represents the time elapsed since the respective
transition enabling. In order to facilitate the TPN’s analysis, it is important to differentiate static
and dynamic intervals associated with transitions. The dynamic firing interval (ID(t)) is composed
by a dynamic lower bound (DLB), and a dynamic upper bound (DUB). ID is computed as
follows: DLB(t) = max(0, EFT (t)− c(t)), andDUB(t) = LFT (t)− c(t)). As it can be seen,



ID(t) is dynamically modified whenever the respective clock variable is incremented, andt does
not fire.

The set of states of a TPN is given byS ⊆ (M×N
|ET (M)|), that is, a single state is defined

by a pair(m, c), wherem is a marking, andc is its respective clock vector forET (m). The initial
state of a TPN iss0 = (m0, c0), wherec0(t) = 0 ∀t ∈ ET (m0). FT (s) is the set of firable
transitions at states defined by:FT (s) = {ti ∈ ET (m)|DLB(ti) ≤ min(DUB(tk))∀tk ∈
ET (m)}, whereFT ⊆ ET ⊆ T . The firing domainfor t at a specific states, is defined by:
FDs(t) = [DLB(t), min (DUB(tk))], ∀tk ∈ ET (m).

The semantic of a time Petri netP = (P, T, F,W,M0, I) is defined by associating a
timed labeled transition system (TLTS)LP= (S,Σ,→, s0) such that: (i)S is the set of states of
P; (ii) Σ ⊆ (T × N) is a set of activities labeled with(t, θ) corresponding to the firing of a firable
transition at a specific time value in the firing intervalFD(s), ∀s ∈ S; (iii) →⊆ S ×Σ×S is the
transition relation; and (iv)s0 is the initial state ofP.

For a state transition〈s, (t, θ), s′〉 in →, it is denoted bys
(t,θ)
−→ s′, implying that the system

can change its state froms to s′ on activity (t, θ). Let LP be a TLTS of a TPNP, wheres0 its
initial state,sn = (mn, cn) a final state, andmn = MF , which is the desired final marking.

s0
(t1,θ1)
−→ s1

(t2,θ2)
−→ s2 − − → sn−1

(tn,θn)
−→ sn is defined as afeasible firing schedule, wheresi

= fire(si−1, (ti, θi)), i > 0, if ti ∈ FT (si−1), andθi ∈ FDsi−1
(ti). As it is presented later,

the modeling methodology guarantees the final markingM F is well-known since it is explicitly
modeled.

4. Task Model

Thetask modelis composed by: (i) a set of periodic preemptable tasks with bounded discrete time
constraints; and (ii) intertask relations, such as precedence and exclusion relations. LetT be the
set of tasks in a system.

Definition 4.1 (Periodic Task) Letτi be a periodic task defined byτi = (phi, ri, ci, di, pi), where
phi is the initial phase;ri is the release time;ci is the worst case computation time;di is the
deadline; andpi is the period.

A periodic task samples objects of interest at a fixed rate. The phase (phi) is the delay
associated to the first time request of taskτi after the system starting.phi = 0 whenever not
specified. The period in whichτi is requested is denoted bypi, andci is the worst case computation
time required for executing taskτi. Release timeri, and deadlinedi, are time instants related to
the beginning of a period. Thus,ri is the earliest time where taskτi may start execution; anddi

is the time at which taskτi must be completed. This work considersci ≤ di ≤ pi. The definition
of the initial phase is important, since non schedulable system may become schedulable when
an initial phase is specified. For instance, considering twotasks,τ1 andτ2, having equal timing
constraints(ph1, r1, c1, d1, p1) = (ph2, r2, c2, d2, p2) = (0, 0, 5, 5, 10). As it can be seen, this
system is not schedulable. However, if an initial phase is specified, i.e. ph2 = 5, the system
becomes schedulable.

Definition 4.2 (Sporadic Task) Letτk = (ck, dk, mink) be a sporadic task, whereck is the worst
case computation time;dk is the deadline; andmink is the minimum period between two activa-
tions of taskτk.

A task is classified as sporadic if it can be randomly activated, but the minimum pe-
riod between two activations is known. As pre-runtime approaches may only schedule periodic
tasks, the sporadic tasks have to be translated to an equivalent periodic task. Based on the Mok’s
work [Mok, 1983], one technique was derived for tackling such problem where each sporadic
task (cs, ds,mins) is translated into a corresponding periodic task(php, rp, cp, dp, pp), satisfy-
ing the following conditions:php = rp = 0, cp = cs, ds ≥ dp ≥ cs, cs ≤ pp ≤
min(ds − dp + 1,mins). For example, consider a sporadic task defined byphs = 0; cs = 2;



ds= 9; andmins = 10. The corresponding periodic process can be:(0, 0, 2, 2, 8), wherephp = 0,
rp = 0, cp = cs = 2, dp = cs = 2, andpp = min(ds − dp + 1,mins) = min(8, 10) = 8. In this
case, the periodic executions are scheduled to start at time0, 8, 16, ..., and if the sporadic request
are, for instance, 1, 11, and 30, then the start times of the sporadic tasks executions are 8, 16, and
32. As it can be noted, despite sporadic tasks arriving happen at random, they can be dealt with
as periodic ones by buffering of such events, and this translation makesds to be always met. Fig-
ure 1 shows graphically how is the behavior of the equivalentperiodic tasks related to the sporadic
requests. In that figure,rsi’s are sporadic requests, andsi’s are actual sporadic executions. As it
can be seen, all timing constraints for sporadic tasks are satisfied by the equivalent periodic task.
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Figure 1: Sporadic constraints are satisfied

A taskτi precedestaskτj, if τj can only start executing afterτi has finished. In general,
this kind of relation is suitable whenever a task (successor) needs information that is produced by
another task (predecessor). A taskτi excludestaskτj, if no execution ofτj can start while task
τi is executing. If it is considered a single processor, then task τi could not be preempted by task
τj. Exclusion relations may prevent simultaneous access to shared resources. In this work it is
considered that the exclusion relation is not symmetrical,that is, when AEXCLUDES B it does
not necessarily implies that BEXCLUDES A.

Each taskτi ∈ T consists of a finite sequence oftask time unitsτ 0
i , τ1

i , · · · , τ
ci−1

i , where
τ j−1
i always precedesτ j

i , for j > 0. A task time unit is the smallest indivisible granule of a task,
during which it cannot be preempted by any other task. It is worth noting that the total number of
task time units is equal to the computation time required by that task. A task can also be split into
more than onesubtasks, where each subtask is composed by one or more task time units.

5. Modeling Real-Time Systems
Hard real-time systems are those that besides its functional correctness, timeliness must be satis-
fied. The modeling phase is very important to attain such constraints.

5.1. Scheduling Period

The proposed method schedules the set of periodic tasks occurring in a period that is equal to the
least common multiple (LCM) of the periods of the given set oftasks. The LCM is also called
schedule period(PS). Within this new period, there are severaltasks instancesof the same task,
whereN(ti) = PS/pi gives the instances ofti. For example, consider the following task model
consisting of two tasks:t1 = (0, 0, 2, 7, 8) andt2 = (0, 2, 3, 6, 6). In this particular case,PS = 24,
implying that the two periodic tasks are replaced by seven new periodic tasks (N(t1) = 3, and
N(t2) = 4), where the timing constraints of each task instance has to be transformed to consider
that new period [Xu and Parnas, 1990].

5.2. Scheduling Methods

Figure 2 presents three ways for modeling scheduling methods, wherec = cs1 + cs2 is the task
computation time (cs1 andcs2 are computation times for the first and last subtask, respectively):



release proc-grant computation
     [1,1]

Pproc

c c
(b) P1 P2 P3

end

...

release proc-grant-s1 comp-sub1
  [cs1,cs1]

Pproc

comp-sub2
  [cs2,cs2]

endproc-grant-s2

(c)

release proc-grant computation
     [C,C]

Pproc

(a) P1 P2 P3

P1 P2 P3 P4 P5

end

...

...

Figure 2: Modeling Scheduling Methods

a) all-non-preemptive: processor is just released after the entire computation befinished.
Figure 2(a) shows that computation transition timing interval has bounds equal to the task
computation time (i.e., [c, c]);

b) all-preemptive: tasks are implicitly split into all possible subtasks. This method allows
running otherconflicting tasks, meaning that one task could preempt another task. It is
worth observing, the difference between the timing interval for the computation transition
and the arc weight in Figures 2(a) and 2(b).

c) defined subtasks: tasks are split into more than one explicitly defined subtasks. Figure 2(c)
shows two subtasks.
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Figure 3: Petri net model

5.3. Tasks Modeling

Figure 3 is used to show (in dashed boxes) the three mainbuilding blocksfor modeling a real-
time task. These blocks are:(a) Task Arrival, which models the periodic invocation for all task’s
instances. Transitiontph models the initial phase, whilst transitionta models the periodic arrival
for the remaining instances;(b) Deadline Checking, where it is used elementary net structures to
capture deadline missing. Some works (e.g. [Altisen et al.,1999]) extended the Petri net model
for dealing with deadline checking.(c) Task Structure, which models: release time, processor
granting, computation, and processor releasing. In Figure3 it is presented a non-preemptive TPN
model for the example presented in previous subsection. It does not model the seven task instances.
Instead, it models only the two original tasks, and the time period of every task instances.

6. Pre-Runtime Scheduling Synthesis

This section investigates how to find a feasible pre-runtimeschedule using state space exploration.
First of all, it presents a brief comparison among runtime and pre-runtime approaches. Later, it



describes how to minimize the state space size, and finally, it presents an algorithm that implements
the proposed method.
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Figure 4: Comparison between Runtime and Pre-runtime Schedul ing

6.1. Runtime versus Pre-runtime

The runtime approach (static or dynamic priority based scheduling) may constrain the possibility
of finding a feasible schedule, even if such schedule exists.For instance, consider the speci-
fication model consisting of five tasks,A, B, C, D, E, and the respective timing constraints:
A = (0, 30, 161); B = (11, 30, 51); C = (60, 10, 90); D = (41, 10, 100); andE = (90, 50, 140).
This specification also considers thatB PRECEDES D, A EXCLUDES B, andA EXCLUDES D.
Figure 4(a) shows that a runtime approach could not find a feasible schedule, since tasksB and
E miss their deadlines. However, a pre-runtime approach findsa feasible schedule (Figure 4(b)).
In this case, processor must be left idle between time 0 and 11, even thoughA’s release time is 0,
since ifA starts, it would causeB andE to miss their deadlines.

In order to provide predictability in a complex hard real-time system, the major character-
istics of tasks must be known (or bounded) in advance, otherwise it would be impossible to guar-
antee a priori that all timing constraints will be met. In accordance with [Xu and Parnas, 1993],
pre-runtime scheduling is often the only means of providingpredictability in complex systems.

6.2. Minimizing State Space Size

6.2.1. Partial-Order Reduction.

When generating TLTS of a time Petri net (or even of process algebra) tasks’ interleaving is the
fundamental point to be considered when analyzing state space explosion problem. As example,
the analysis ofn concurrent activities needs searching alln! interleaving possibilities. If activities
can be executed in any order, such that the system always reaches the same state, these activities
areindependent. In other words, it does not matter in which order the activities are executed. The
partial-order reduction method explores the independenceof activities [Godefroid, 1994].

The independent activities are those that do not disable anyother activity, such as: arrival,
release, precedence, computation (after the processor granting), processor releasing, and end-task.
This reduction method proposes giving to each class of independent activities differentchoice pri-
ority levels. The other activities, the dependent ones, likeexclusionandprocessor granting, have
lowest choice priority. Therefore, when changing from one state to another state, it is sufficient to
analyze the class with highest choice priority and pruning the other ones. When all independent
activities are executed, certainly the final state is the same, because the order between them does
not matter.

This reduction is important due to two reasons: (i) depleting the amount of storage; and
(ii) finding a fast negative result, when the system does not have a feasible schedule.



6.2.2. Removing Undesirable States.

In Section 5 it is presented how to model undesirable error states (or markings), for instance, states
that represent missed deadlines. The method proposed is of interest for schedules that do not reach
any of these undesirable states. For this reason, when generating the TLTS, the transitions leading
to undesirable error states, represented by the setT E (which is well-known for the designer) have
to be discarded.

Table 1: Illustrative example
# st ET C PT trans+time

1 0 {tstart} {0} {tstart} {tstart,0}
2 1 {tph1,tph2} {0,0} {tph1,tph2} {tph1,0}
3 2 {tph2,tr1,ta1,td1} {0,0,0,0} {tph2} {tph2,0}
4 3 {tr1,ta1,ta2,td1,td2} {0,0,0,0,0} {tr1} {tr1,0}
5 4 {tp1,ta1,ta2,td1,td2} {0,0,0,0,0} {tp1} {tp1,0}
6 5 {tr2,tc1,ta1,ta2,td1,td2} {0,0,0,0,0,0} {tr2} {tr2,2}
7 6 {tc1,ta1,ta2,td1,td2} {2,2,2,2,2} {tc1} {tc1,0}
8 7 {tp2,ta1,ta2,td2} {0,2,2,2} {tp2} {tp2,0}
9 8 {tc2,ta1,ta2,td2} {0,2,2,2} {tc2} {tc2,3}
10 9 {ta1,ta2} {5,5} {ta2} {ta2,1}
11 10 {ta1,ta2,tr2,td2,} {6,0,0,0} {ta1} {ta1,2}
12 11 {ta1,ta2,tr1,tr2,td1,td2} {0,2,0,2,0,2} {tr1,tr2} {tr1,0}
13 12 {ta1,ta2,tr2,td1,td2,tp1} {0,2,2,0,2,0} {tr2} {tr2,0}
14 13 {ta1,ta2,td1,td2,tp1,tp2} {0,2,0,2,0,0} {tp1,tp2} {tp1,0}
15 14 {ta1,ta2,td1,td2,tc1} {0,2,0,2,0} {tc1} {tc1,2}
16 15 {ta1,ta2,td2,tp2} {2,4,4,0} {tp2} {tp2,0}
17 16 {ta1,ta2,td2,tc2} {2,4,4,0} {ta2} {ta2,2}
18 17 {ta1,ta2,td2,tr2} {4,0,6,2} {td2} {td2,0}
19 13 {ta1,ta2,td1,td2,tp1,tp2} {0,2,0,2,0,0} {tp2} {tp2,0}
20 14 {ta1,ta2,td1,td2,tc2} {0,2,0,2,0} {tc2} {tc2,3}
21 15 {ta1,ta2,td1,tp1} {3,5,3,0} {tp1} {tp1,0}
22 16 {ta1,ta2,td1,tc1} {3,5,3,0} {ta2} {ta2,1}
23 17 {ta1,ta2,td1,td2,tc1,tr2} {4,0,4,0,1,0} {tc1} {tc1,1}
24 18 {ta1,ta2,tr2,td2} {5,1,1,1} {tr2} {tr2,1}
25 19 {ta1,ta2,tp2,td2} {6,2,0,2} {tp2} {tp2,0}
26 20 {ta1,ta2,tc2,td2} {6,2,0,0} {ta1} {ta1,2}
27 21 {ta2,tr1,td1,td2,tc2} {4,0,0,4,2} {tr1} {ta1,0}
28 22 {ta2,tc2,td1,td2} {4,2,0,4} {tc2} {tc2,1}
29 23 {ta2,td1,tp1} {5,1,0} {tp1} {tp1,0}
30 24 {ta2,td1,tc1} {5,1,0} {ta2} {ta2,1}
31 25 {td1,tc1,td2,tr2} {2,1,0,0} {tc1} {tc1,1}
32 26 {td2,tr2} {1,1} {tr2} {tr2,1}
33 27 {td2,tp2} {2,0} {tp2} {tp2,0}
34 28 {td2,tc2} {2,0} {tc2} {tc2,3}
35 29 {tend} {0} {tend} {tend,0}

6.3. Pre-Runtime Scheduling Algorithm

The algorithm proposed in this work is a depth-first search method on a TLTS. So, the TLTS is
not completely generated before the search, but it is partially generated, as needed. The TLTS is
reduced since not all transitions are evaluated due to the partial-order reduction method and the
undesirable transitions (which certainly lead to undesirable states). Thestop criterionis obtained
whenever the desirable final markingMF is reached, representing that afeasible firing schedule
was found.

The algorithm (Fig. 5) describes the proposed solution. Considering that, (i) the Petri net
model is guaranteed to be bounded, and (ii) the timing constraints are by definition bounded and
discrete, this implies that the TLTS is finite and thus the proposed algorithm always finishes.

The only way the algorithm returns TRUE is when it reaches a desired final marking
(MF ), implying that a feasible schedule was found (line 3). The state space generation algorithm
is modified (line 5) to incorporate the pruning from the partial-order reduction technique, and
removing transitions (T E) that lead to undesirable states.PT is a set of an ordered pairs〈t, θ〉
representing for each firable transition (pruned) all possible firing time in the firing domain. The
tagging scheme(lines 4 and 9) ensures that no state is visited more than once. The functionfire
(line 8) returns a new generated state (S ′) due to the firing of transitiont at timeθ. The algorithm



1 scheduling-synthesis(S, MF ,PN)
2 {
3 if (S.M = MF ) return TRUE;
4 tag(S);
5 PT = pruning(firable(S));
6 if (|PT| = 0) return FALSE;
7 for each (〈t, θ〉 ∈ PT) {
8 S’= fire(S, t, θ);
9 if (untagged(S’) ∧ scheduling-synthesis(S’,MF,PN)){
10 add-in-trans-system (S,S’,t,θ);
11 return TRUE;
12 }
13 }
14 return FALSE;
15 }

Figure 5: Scheduling Synthesis Algorithm

generates a transition system when successfully returningfrom the recursive call. The feasible
schedule is represented by a timed labeled transition system that is generated by the function
add-in-trans-system (line 10). In case the system does not have a feasible schedule, the
proposed method searches the whole reduced state space.

The actual implementation of the pre-runtime scheduler canbe reduced to an executive
cyclic using an execution table (or lookup table) that states, for each task, its respective starting
time. This information came from the timed labeled transition systems generated by the proposed
pre-runtime scheduling synthesis framework.

6.4. Application of the Algorithm

Table 1 depicts the algorithm execution (Figure 5) applied to the time Petri net model of Figure 3.
In this table, we see for each reachable state, the respective enabled transition set, the clock values,
the firable transition set, and the chosen transition to be fired at a specific time instant. At line 14
(state 13), two transitions (tp1 andtp2) are firable. As it can be seen, the decision taken in a state
may change the firable sequences. In this specific situation,the possible execution of taskT1 on
the processor (choosingtp1 for firing) is a wrong choice because, after that, taskT2 misses its
deadline (line 18). The algorithmbacktracksto state 13 (line 19) and try another alternative, now
granting the processor to the taskT2 (now choosingtp2 for firing). This new decision leads to a
feasible schedule, since in the line 35 the firing of transition tend reaches the desired final marking.

Table 2: Experimental results summary

Example instances state-min found time (s) method

Simple Control Application 28 50 50 0.0002 DS
Robotic Arm 37 150 150 0.01 NP
Xu (example 3) 4 171 1566 0.78 P
Xu (figure 9) 5 281 2387 2.6 P
Mine Drainage Control 782 3130 3255 9.3 NP
Unmanned Ground Vehicle 433 4701 14761 324 P

7. Case Study: Unmanned Ground Vehicle

The proposed method for scheduling synthesis was applied inapplications such as simple control
application (that runs on a 4-processors), robotic arm control, mine drainage control, and two ex-
amples from Xu and Parnas [Xu and Parnas, 1990] showing that priority-based scheduling could
not find a feasible schedule even if such schedule exists. Table 2 shows a summary of the exper-
imental results. In that table,instancesrepresent the number of tasks’ instances.state-minis the
minimum number of states to be verified,foundcounts the number of states actually verified for
finding a feasible scheduling,timeexpresses the algorithm execution time in seconds, andmethod
is the scheduling method chosen (preemptive, non-preemptive, or defined subtasks). The results
presented were obtained for finding the first feasible schedule.



All experiments were performed on a dual Pentium-III 600 Mhzprocessors with 768 MB
RAM, OS Linux, and compiler GCC 2.95.4. However, in order to depict the practical usability of
the proposed scheduling in more details, it is used an unmanned ground vehicle (UGV) case study,
based on the work of [Sieh et al., 2001]. Although this application was intended to show how to
deal with transient fault tolerance, it is used here to demonstrate the feasibility of the proposed
methodology.

In this case study, the type of vehicle is designed to traverse hazardous ground for collect-
ing various kinds of data (data, images,...). A semi-autonomous capability for making local path
decisions is triggered when it encounters unforeseen hazards, e.g., debris, rubble, land miles, etc.
A UGV have to provide two main services: its own mobility, andcollecting information of interest
for the controllers. The first one includes functions such assteering, braking, and speed control
as well as the aiding in planning local autonomous movement.The second service includes the
capture of data sensors, such as infrared, uwave, radar, andso on.

Table 3: UGV Specification Model

Task cp dp pp arrival ds mins Inst.

Vehicle Braking 2 33 28 sporadic 60 250 100
Hazard Response - Local Path Planning 20 26 175 sporadic 200 250 16
Sensor Data Fusion 10 80 400 periodic 7
Steering Control Loop 4 40 40 periodic 70
Steering Set Point 2 5 56 sporadic 60 200 50
Velocity Control Loop 4 30 40 periodic 70
Velocity Set Point 2 5 56 sporadic 60 200 50
System Management 5 60 100 periodic 28
CPU Status 5 100 200 periodic 14
Electrical System Status 5 100 200 periodic 14
Power Train Status 5 100 200 periodic 14

Table 3 shows the timing constraints for each task in this case study. In accordance
with [Sieh et al., 2001], the tasks are all independent ones.This task model has a processor uti-
lization factor of about 61%, which is not very low. As it can be noted, the sporadic tasks have
to be translated into periodic ones. This translation is conducted in such a way that the LCM
is minimized. The last column presents the number of task instances for each task, taking into
accout that the LCM is equal to 2,800. In this case, the total of tasks’ instances is 433. The
intermediate model is generated using a specific tool that automatically translates the initial spec-
ification into a time Petri net model specified using the PNML (Petri Net Markup Language)
formal [Weber and Kindler, 2003].

The proposed approach finds a feasible schedule after analyzing 14761 states, where the
minimum number of states is 4701, in 324 seconds. It is worth noting the scheduling method isall-
preemptive, implying that all tasks are implicitly split into all possible subtasks, which certainly
increases time and space complexity. However, the time performance is not a major concern
mainly due to the fact that the algorithm compute the schedule at compile time. Another reason, is
due to the application domain considered (i.e. embedded systems), where schedule modifications
are not common. The prototype tool that implements the algorithm should be optimized, mainly
with respect to the tagging scheme.

8. Conclusions

This paper proposed a formal modeling methodology based on time Petri nets, and a framework for
pre-runtime scheduling synthesis using a reduced state space exploration algorithm. The practical
usability was depicted by a real-world case study, namely, an unmanned ground vehicle.

In spite of this analysis technique is not new, to the best of our knowledge, there is no
work reported similar to ours that models hard real-time systems and finds (whether one exists) a
respective pre-runtime scheduling.



The real-time task specification can be very general, since it can have timing constraints,
and arbitrary intertask relations, such as precedence and exclusion relations. The formal modeling
methodology presented how to model real-time systems usingthe time Petri net formalism, and
also how to deal with undesirable states, for example, states with missed deadline.

The proposed algorithm is a depth-first search method on a finite timed labeled transition
system derived from a time Petri net model. When searching for a feasible schedule, the algorithm
suffers from the state space explosion problem. In order to maintain the state space growth under
control, the proposed method uses minimization techniques. Considering the boundedness of the
proposed time Petri net model, the algorithm presented always finds a schedule, provided that one
exists.

The system modeling and pre-runtime scheduling synthesis proposed can be used to syn-
thesize predictable and timely scheduled code. So, it is planned to generate complete executable
code from the formal model. This can be solved through time Petri nets with tasks, which is an
extension of time Petri nets, that annotates transitions with program code. Another extension is to
add some flexibility to the pre-runtime scheduling. This problem can be solved through providing
a small runtime scheduler for selecting different operational modes [Fohler, 1994], where each
operational mode has a different pre-runtime scheduler associated.

References
Abdelzaher, T. F. and Shin, K. G. (1997). Comments on a pre-run-time scheduling algorithm for hard real-time systems.

IEEE Trans. Soft. Engineering, 23(9):599–600.

Abdelzaher, T. F. and Shin, K. G. (1999). Combined task and message scheduling in distributed real-time systems.
IEEE Trans. Parallel and Distributed Systems, 10(11):1179–1191.
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