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Abstract. Finding a hard real-time feasible schedule is not triviai this problem is
NP-hard in its general form. There are two general approacfa scheduling tasks:
runtime and pre-runtime scheduling. For many cases, ruatinethods do not find a
feasible schedule even if such a schedule exists. Suchimisiaften occurs when
the design model imposes intertask relations, such as gezoe and exclusion rela-
tions. The method proposed in this work finds a pre-runtinnedaling, provided that
one exists, using state space exploration. The main problgmsuch methods is the
space size, which can grow exponentially. This paper applimimization methods on
the state space, and presents a depth-first search methodimred labeled transition
system derived from the time Petri net model. This model isnapact and precise
representation of tasks, their relations and constraints.

1. Introduction

Embedded hard real-time systems are dedicated computiadigms having to satisfy stringent
timing constraints, that is, they must guarantee that akgaomplete before their deadlines. A
failure to meet deadlines may have serious consequencesisuiesources damage or even loss of
human life. In order to meet this requirement, schedulingopas an important role. Although
we have proposed a method for scheduling in multiprocessmtstecture [Barreto et al., 2004],
in this paper the discussion is restricted to uniprocessar@ament.

In real-time systems, there are two general approacheshedsling tasks: runtime and
pre-runtime scheduling. lruntime schedulingschedules are computed on-line as tasks arrive,
using a priority-driven approach. However, there are sitaa where this approach is not able
of finding a feasible schedule, even when such schedulesexi3h the other hand, in a pre-
runtime scheduling algorithm the schedule is computedantoff-line, which can achieve 100%
processor utilization, and it can reduce context-switghifihis approach is considered inflexible,
but it is not a concern if it is considered embedded systems.

This work usestate space exploratiosince it provides a complete automatic strategy for
verifying finite-state systems [Godefroid, 1994]. It catsiin recursively checking all successor
states, starting in a given initial state, by executing afitded action in each state. In spite of a
feasible schedule can be found using such strategy, it méiyniied by the excessive size of its
state space. This problem comes up due to the analysis baghe mterleaving of concurrent
activities. This exponential growth is known as tstate explosion problerfGodefroid, 1994,
Valmari, 1998]. This paper applies minimization methodshenstate space, and presents a depth-
first search algorithm for finding a feasible schedule on tivémized state space.

The rest of the paper is organized as follows: Section 2 shelased works. Section
3 presents the computational model syntax and semantiadiose describes the task model.
Section 5 introduces the formal modeling methodology antti@e 6 shows how to synthesize



pre-runtime schedules. Section 7 presents experimergaltse explaining in more details an
unmanned ground vehicle case study. Finally, Section 8 slsome conclusions.

2. Related Work

Xu and Parnas [Xu and Parnas, 1990] present an algorithmfitigg an optimal pre-runtime
schedule on a single processor for real-time process segmath release, deadlines, and ar-
bitrary exclusion and precedence relations, using a brandbound algorithm. In spite of the im-
portance of this work, it does not presented real-world Brpental results. Shepard and Gagné
[Shepard and Gagné, 1991] extended the work of Xu and Payma®posing an implicit enumer-
ation technique for dealing with multiprocessors, but asted out in [Abdelzaher and Shin, 1997],
the algorithm occasionally fails in finding existing fedsilschedules, since it attempts to reduce
schedule lateness by modifying only the schedule of thegssmr running the latest segment.
Abdelzaher and Shin [Abdelzaher and Shin, 1999] proposeektmsion to the Xu and Parnas’
pre-run-time scheduling algorithm in order to deal withtidlimited real-time systems. This algo-
rithm takes into account delays, precedence relations segbby interprocess communications,
and considers many possibilities for improving the schiedubateness at the cost of complexity.

Several authors also use Petri nets in scheduling theagy[fu et al., 2002]). However,
they are only concerned with schedulability analysis, inglyon a well-known priority policy,
which may not find feasible schedules if arbitrary precedeartd exclusion relations are consid-
ered.

Comparing the proposed approach with previous works, fiedifin the sense that: (1)
Previous works model thecheduling problemnot thesystem This work uses a time Petri net
formalism for system’s modeling in order to find a feasiblaextuling. Furthermore, the model
can also be used to synthesize predictable and timely sldtedade; and (2) Using Petri net
analysis techniques allows one to check several systenefieg such as, reachability, deadlock-
freedom, boundedness, fairness, etc.

Although state space exploration is not new, at the bestiopmsent knowledge, there is
no similar work that uses formal methods for modeling re@aktsystems with the aim of finding
a feasible pre-runtime scheduling. This work brings an irtgyd contribution since it opens up a
new possibility for analyzing a problem studied for manyrgea

3. Computational Model

The computational model syntax is given by a time Petri netdM and Faber, 1976], which is
a Petri net [Murata, 1989] extended with time, and its sefoans given by its timed labeled
transition system.

A time Petri net (TPN) is a bipartite directed graph représgrby a tupleT PN =
(P, T,F,W,mg,I). P (ordered set of places), affd (ordered set of transitions) are non-empty
disjoint sets and represent the two types of nodes in thengrdjhe edges are represented by
F C(PxT)uU(T x P),which is aflow relation]V : F' — N represents the weight of the flow
relation (). A TPN markingm; is a vectorm; € NPl andmy is the initial marking. Finally,
I : T — N x N, represents the timing constraints, whéte) = (EFT'(t), LFT(t)) Yt € T
and EFT(t) < LFT(t). The lower and upper bound are called earliest and latesg finme,
respectively.

A set of enabled transitions is denoted y7T'(m;) = {t € T | m;(p;) > W(p;,t)},
Vp; € P. C € NIFT(M)l s a clock vector, which represents the time elapsed sirecestpective
transition enabling. In order to facilitate the TPN's arsddy it is important to differentiate static
and dynamic intervals associated with transitions. Thedya firing interval { 5 (¢)) is composed
by a dynamic lower bound/§L B), and a dynamic upper bound{ B). Ip is computed as
follows: DLB(t) = max(0, EFT(t)—c(t)), andDUB(t) = LFT(t) —c(t)). As it can be seen,



Ip(t) is dynamically modified whenever the respective clock Vdeias incremented, anddoes
not fire.

The set of states of a TPN is given ByC (M x NIFT(M)I) that is, a single state is defined
by a pair(m, ¢), wherem is a marking, and is its respective clock vector fdt'T'(m). The initial
state of a TPN issg = (mo, co), Wherecy(t) = 0 Vt € ET(mg). FT(s) is the set of firable
transitions at state defined by: FT'(s) = {t; € ET(m)|DLB(t;) < min(DUB(t))Vt; €
ET(m)}, whereFT' C ET C T. Thefiring domainfor ¢ at a specific state, is defined by:
FD,(t) = [DLB(t), min (DU B(t))], Yt € ET(m).

The semantic of a time Petri n@ = (P,T, F, W, My, I) is defined by associating a
timed labeled transition system (TLT8)= (S, X, —, sg) such that: (i)S is the set of states of
P; (i) ¥ C (T x N) is a set of activities labeled witft, #) corresponding to the firing of a firable
transition at a specific time value in the firing intervaD (s), Vs € S; (i) — C S x X x Sisthe
transition relation; and (iv3 is the initial state ofP.

For a state transitiofs, (¢, 6), s’) in —, it is denoted by G s', implying that the system

can change its state fromto s’ on activity (¢,6). Let Lp be a TLTS of a TPNP, wheres its
initial state,s, = (my,c,) a final state, andn,, = M, which is the desired final marking.
) (tn,0n)

50 (t1.61) s1 (f2,62 S9g — — — 5,1 — s, is defined as deasible firing schedulewvheres;
=fire(s;i—1,(ti,0;)), i > 0, if t; € FT(s;—1), andd; € FD;,  (t;). Asitis presented later,
the modeling methodology guarantees the final marking is well-known since it is explicitly

modeled.

4. Task Model

Thetask modeis composed by: (i) a set of periodic preemptable tasks vatinded discrete time
constraints; and (i) intertask relations, such as prenegl@nd exclusion relations. L&tbe the
set of tasks in a system.

Definition 4.1 (Periodic Task) Letr; be a periodic task defined by = (ph;, r;, ¢i, d;, p;), where
ph; is the initial phase;r; is the release timeg; is the worst case computation timé; is the
deadline; andp; is the period.

A periodic task samples objects of interest at a fixed ratee diaseh;) is the delay
associated to the first time request of taslkafter the system startingph; = 0 whenever not
specified. The period in which is requested is denoted py, andc; is the worst case computation
time required for executing task. Release time;, and deadlinel;, are time instants related to
the beginning of a period. Thus; is the earliest time where task may start execution; and,
is the time at which task; must be completed. This work considets< d; < p;. The definition
of the initial phase is important, since non schedulabldesysmay become schedulable when
an initial phase is specified. For instance, consideringtasks,; andr, having equal timing
constraints(phy,ri,c1,d1,p1) = (phe,ra,c2,d2,p2) = (0,0,5,5,10). As it can be seen, this
system is not schedulable. However, if an initial phase eciied, i.e. pho = 5, the system
becomes schedulable.

Definition 4.2 (Sporadic Task) Letr; = (¢, di, ming) be a sporadic task, wherg, is the worst
case computation timefy, is the deadline; andnin; is the minimum period between two activa-
tions of taskr.

A task is classified as sporadic if it can be randomly actdjateut the minimum pe-
riod between two activations is known. As pre-runtime apph®s may only schedule periodic
tasks, the sporadic tasks have to be translated to an egputiyariodic task. Based on the Mok’s
work [Mok, 1983], one technique was derived for tackling l'sygroblem where each sporadic
task (cs, ds, ming) is translated into a corresponding periodic tégk,,,,, c,, dp, pp), Satisfy-
ing the following conditions:ph, = r, = 0, ¢, = ¢5, ds > dp > ¢c5, ¢5 < pp <
min(ds — d, + 1, min,). For example, consider a sporadic task definechhby = 0; ¢ = 2;



ds=9; andmin, = 10. The corresponding periodic process can(beo, 2, 2, 8), whereph,, = 0,
rp=0,¢p =cs =2,dp = cs = 2, andp, = min(ds — dp + 1, ming) = min(8, 10) = 8. In this
case, the periodic executions are scheduled to start atti®el6, ..., and if the sporadic request
are, for instance, 1, 11, and 30, then the start times of theadjr tasks executions are 8, 16, and
32. As it can be noted, despite sporadic tasks arriving happeandom, they can be dealt with
as periodic ones by buffering of such events, and this @#iosl makesl, to be always met. Fig-
ure 1 shows graphically how is the behavior of the equivgbeniodic tasks related to the sporadic
requests. In that figure,s;'s are sporadic requests, angs are actual sporadic executions. As it
can be seen, all timing constraints for sporadic tasks aisfied by the equivalent periodic task.
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Figure 1: Sporadic constraints are satisfied

A task; precededaskr;, if 7; can only start executing aftef has finished. In general,
this kind of relation is suitable whenever a task (succgsseeds information that is produced by
another task (predecessor). A taskexcludegaskr;, if no execution ofr; can start while task
7; IS executing. If it is considered a single processor, thektacould not be preempted by task
7;. Exclusion relations may prevent simultaneous accessaedlresources. In this work it is
considered that the exclusion relation is not symmetritat is, when AEXCLUDES B it does
not necessarily implies that BXCLUDES A.

Each task; € 7 consists of a finite sequencetaik time unitg?, 7.}, -- -, 7"~!, where

R ’ g

77" always precedes/, for j > 0. A task time unit is the smallest indivisible granule of &ias
during which it cannot be preempted by any other task. It iglvooting that the total number of
task time units is equal to the computation time requiredhiay task. A task can also be split into

more than onsubtaskswhere each subtask is composed by one or more task time units

5. Modeling Real-Time Systems

Hard real-time systems are those that besides its funt¢tommeectness, timeliness must be satis-
fied. The modeling phase is very important to attain suchtcainss.

5.1. Scheduling Period

The proposed method schedules the set of periodic tasksrimgrin a period that is equal to the
least common multiple (LCM) of the periods of the given setasks. The LCM is also called
schedule periodPs). Within this new period, there are sevetatks instancesf the same task,
whereN (t;) = Ps/p; gives the instances of. For example, consider the following task model
consisting of two tasks:; = (0,0,2,7,8) andty = (0,2, 3,6,6). Inthis particular case?s = 24,
implying that the two periodic tasks are replaced by sevem periodic tasks §(¢1) = 3, and
N(t2) = 4), where the timing constraints of each task instance hae teansformed to consider
that new period [Xu and Parnas, 1990].

5.2. Scheduling Methods

Figure 2 presents three ways for modeling scheduling mstheterec = cs; + c¢so is the task
computation timeds; andcs, are computation times for the first and last subtask, resedgt
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Figure 2: Modeling Scheduling Methods

a) all-non-preemptive processor is just released after the entire computatiofinished.
Figure 2(a) shows that computation transition timing ivéhas bounds equal to the task
computation time (i.e.,d, c]);

b) all-preemptive tasks are implicitly split into all possible subtasks. §hiethod allows
running otherconflicting tasksmeaning that one task could preempt another task. It is
worth observing, the difference between the timing intefoathe computation transition
and the arc weight in Figures 2(a) and 2(b).

c) defined subtasksasks are split into more than one explicitly defined slktstakigure 2(c)
shows two subtasks.
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Figure 3: Petri net model

5.3. Tasks Modeling

Figure 3 is used to show (in dashed boxes) the three imilding blocksfor modeling a real-
time task. These blocks aréa) Task Arriva] which models the periodic invocation for all task’s
instances. Transitiot,, models the initial phase, whilst transitiep models the periodic arrival
for the remaining instancegh) Deadline Checkingwhere it is used elementary net structures to
capture deadline missing. Some works (e.g. [Altisen efl@P9]) extended the Petri net model
for dealing with deadline checking(c) Task Structurewhich models: release time, processor
granting, computation, and processor releasing. In Figurés presented a non-preemptive TPN
model for the example presented in previous subsectiolmelt dot model the seven task instances.
Instead, it models only the two original tasks, and the tiraeqal of every task instances.

6. Pre-Runtime Scheduling Synthesis

This section investigates how to find a feasible pre-runsoiedule using state space exploration.
First of all, it presents a brief comparison among runtime pre-runtime approaches. Later, it



describes how to minimize the state space size, and fingllg$ents an algorithm that implements
the proposed method.
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Figure 4: Comparison between Runtime and Pre-runtime Schedul ing

6.1. Runtime versus Pre-runtime

The runtime approach (static or dynamic priority based delireg) may constrain the possibility
of finding a feasible schedule, even if such schedule exiBts. instance, consider the speci-
fication model consisting of five taskgl, B, C, D, E, and the respective timing constraints:
A =(0,30,161); B = (11,30,51); C = (60,10,90); D = (41,10, 100); andE = (90, 50, 140).
This specification also considers tHatPRECEDES D, A EXCLUDES B, and A EXCLUDES D.
Figure 4(a) shows that a runtime approach could not find abfleaschedule, since tasks and

E miss their deadlines. However, a pre-runtime approach firféssible schedule (Figure 4(b)).
In this case, processor must be left idle between time 0 andveh thoughd’s release time is 0,
since if A starts, it would caus® and E' to miss their deadlines.

In order to provide predictability in a complex hard reahdi system, the major character-
istics of tasks must be known (or bounded) in advance, oikerivwould be impossible to guar-
antee a priori that all timing constraints will be met. In aaance with [Xu and Parnas, 1993],
pre-runtime scheduling is often the only means of provigiredictability in complex systems.

6.2. Minimizing State Space Size
6.2.1. Partial-Order Reduction.

When generating TLTS of a time Petri net (or even of procegsbah) tasks’ interleaving is the
fundamental point to be considered when analyzing stateespgplosion problem. As example,
the analysis of. concurrent activities needs searchingralinterleaving possibilities. If activities
can be executed in any order, such that the system alwaylsa®#te same state, these activities
areindependentin other words, it does not matter in which order the adégiare executed. The
partial-order reduction method explores the independeheetivities [Godefroid, 1994].

The independent activities are those that do not disabletdm®y activity, such as: arrival,
release, precedence, computation (after the processuirgyg processor releasing, and end-task.
This reduction method proposes giving to each class of ieldgnt activities differerthoice pri-
ority levels. The other activities, the dependent ones,dikdusionandprocessor grantinghave
lowest choice priority. Therefore, when changing from otagesto another state, it is sufficient to
analyze the class with highest choice priority and prunhgdther ones. When all independent
activities are executed, certainly the final state is theesdracause the order between them does
not matter.

This reduction is important due to two reasons: (i) deptetime amount of storage; and
(i) finding a fast negative result, when the system does aet fa feasible schedule.



6.2.2. Removing Undesirable States.

In Section 5 itis presented how to model undesirable eratest(or markings), for instance, states
that represent missed deadlines. The method proposediteést for schedules that do not reach
any of these undesirable states. For this reason, whenajgrethe TLTS, the transitions leading
to undesirable error states, represented by th& &ewhich is well-known for the designer) have
to be discarded.

Table 1: lllustrative example

# st ET C PT trans+time
1 0 {tstart: {0} {tstart {tstart,d
2 1 {tph1,tph2 {0,0} {tph1,tph% {tph1,0t
3 2 {tph2,tr1,tal,td} {0,0,0,G {tph2} {tph2,0
4 3 {trl,tal,ta2,td1,td@ {0,0,0,0,¢ {tr1} {tr1,0}
5 4 {tpl,tal,ta2,td1,td2 {0,0,0,0,¢ {tp1} {tp1,0}
6 5 {tr2,tc1,tal,ta2,td1,td2 {0,0,0,0,0,0 {tr2} {tr2,2}
7 6 {tcl tal ta2,td1,td2 {2,2,2,2,2 {tc1} {tc1,0}
8 7 {tp2,tal,ta2,tdp {0,2,2,2 {tp2} {tp2,0}
9 8 {tc2,tal,ta2,tdp {0,2,2,2 {tc2} {tc2,3}
10 9 {tal,ta3 {5,5} {ta2} {ta2,1}
11 10 {tal,ta2,tr2,td3, {6,0,0,G {tal} {tal,2
12 11 {talta2,trl,tr2,td1,tq2 {0,2,0,2,0,2 {tr1,tr2} {tr1,0}
13 12 {tal,ta2,tr2,td1,td2,t31 {0,2,2,0,2,0 {tr2} {tr2,0}
14 13 {talta2,td1,td2,tpl,tp2 {0,2,0,2,0,0 {tp1,tp2} {tp1,0}
15 14 {tal,ta2,td1,td2,tql {0,2,0,2,¢ {tc1} {tc1,2}
16 15  {talta2,td2,tpp {2440 {tp2} {tp2,0}
17 16 {tal,ta2,td2,tcp {2,444 {ta2} {ta2,2
18 17 {talta2,td2,tr2} {4,062 {td2} {td2,0}
19 13 {tal,ta2,td1,td2,tpl,tp2} {0,2,0,2,0,0 {tp2} {tp2,0}
20 14 {talta2,td1,td2,tc2 {0,2,0,2,¢ {tc2} {tc2,3
21 15  {talta2,tdl,tpl {3,53,0 {tp1} {tp1,0}
22 16 {tal,ta2,td1,tct {3,530 {ta2} {ta2,1
23 17 {talta2,td1,td2,tc1,t}2 {4,04,0,1,0 {tc1} {tc1,1}
24 18 {tal,ta2,tr2,tdp {51,1,1 {tr2} {tr2,1}
25 19  {talta2tp2,tdp {6,2,0,2 {tp2} {tp2,0}
26 20 {tal,ta2,tc2,tdp {6,2,0,0 {tal} {tal,2
27 21 {ta2,rl,td1,td2,tc@ {4,004,2 {tr1} {ta1,0
28 22 {ta2,tc2,td1,tdp {4,2,04 {tc2} {tc2,1}
29 23 {ta2,td1,tp} {5,1,0t {tp1} {tp1,0}
30 24  {ta2tdltc} {5,1,0 {ta2} {ta2,1
31 25 {td1,tc1,td2,tr3 {2,1,0,0 {tc1} {tc1,1}
32 26 {td2,tr3} {11 {tr2} {tr2,1}
33 27 {td2,tp2 {2,0} {tp2} {tp2,0
34 28  {td2,tc2 {2,0 {tc2} {tc2,3
35 29 {tend} {0} {tend} {tend,0}

6.3. Pre-Runtime Scheduling Algorithm

The algorithm proposed in this work is a depth-first searcthoteon a TLTS. So, the TLTS is
not completely generated before the search, but it is figrganerated, as needed. The TLTS is
reduced since not all transitions are evaluated due to th@lparder reduction method and the
undesirable transitions (which certainly lead to undédiratates). Thetop criterionis obtained
whenever the desirable final markidg’" is reached, representing thateasible firing schedule
was found.

The algorithm (Fig. 5) describes the proposed solution.sieleming that, (i) the Petri net
model is guaranteed to be bounded, and (ii) the timing caimésr are by definition bounded and
discrete, this implies that the TLTS is finite and thus theopsed algorithm always finishes.

The only way the algorithm returns TRUE is when it reaches sirelé final marking
(MF), implying that a feasible schedule was found (line 3). Tiagesspace generation algorithm
is modified (line 5) to incorporate the pruning from the @rtirder reduction technique, and
removing transitions(”) that lead to undesirable stateBT is a set of an ordered pairs, §)
representing for each firable transition (pruned) all gaediring time in the firing domain. The
tagging schem@ines 4 and 9) ensures that no state is visited more than dineefunctionf i r e
(line 8) returns a new generated staé) (due to the firing of transition at timed. The algorithm



1 schedul i ng-synt hesi s(S, M, PN)

2 {

3 if (SSM= M) return TRUE

4 tag(9);

5 PT = pruning(firable(S));

6 if (|PT| = 0) return FALSE;

7 for each ((t,0) € PT) {

8 S="fire(Ss t, 0);

9 if (untagged(S ) A scheduling-synthesis(S , M, PN)){

10 add-in-trans-system (S, S ,t, 0);
11 return TRUE;

12 }

13

14 return FALSE;

15 }

Figure 5: Scheduling Synthesis Algorithm

generates a transition system when successfully retufnimg the recursive call. The feasible
schedule is represented by a timed labeled transition ray8tat is generated by the function
add- i n-trans-syst em(line 10). In case the system does not have a feasible sehdtiel
proposed method searches the whole reduced state space.

The actual implementation of the pre-runtime schedulerbmneduced to an executive
cyclic using an execution table (or lookup table) that stater each task, its respective starting
time. This information came from the timed labeled trapsitystems generated by the proposed
pre-runtime scheduling synthesis framework.

6.4. Application of the Algorithm

Table 1 depicts the algorithm execution (Figure 5) appl@Ethé time Petri net model of Figure 3.

In this table, we see for each reachable state, the respettabled transition set, the clock values,
the firable transition set, and the chosen transition to be fit a specific time instant. At line 14
(state 13), two transitiong)f; andtp) are firable. As it can be seen, the decision taken in a state
may change the firable sequences. In this specific situatierpossible execution of tagkl on

the processor (choosing; for firing) is a wrong choice because, after that, tdskmisses its
deadline (line 18). The algorithimacktrackso state 13 (line 19) and try another alternative, now
granting the processor to the tagk (now choosingp, for firing). This new decision leads to a
feasible schedule, since in the line 35 the firing of traositi,,; reaches the desired final marking.

Table 2: Experimental results summary

Example instances state-min found time (s) method
Simple Control Application 28 50 50 0.0002 DS
Robotic Arm 37 150 150 0.01 NP
Xu (example 3) 4 171 1566  0.78 P
Xu (figure 9) 5 281 2387 2.6 P
Mine Drainage Control 782 3130 3255 9.3 NP
Unmanned Ground Vehicle 433 4701 14761 324 P

7. Case Study: Unmanned Ground Vehicle

The proposed method for scheduling synthesis was appliadglications such as simple control
application (that runs on a 4-processors), robotic armrobnhine drainage control, and two ex-
amples from Xu and Parnas [Xu and Parnas, 1990] showing thattp-based scheduling could
not find a feasible schedule even if such schedule existde Pakhows a summary of the exper-
imental results. In that tabl@stancesepresent the number of tasks’ instancgsite-minis the
minimum number of states to be verififdund counts the number of states actually verified for
finding a feasible schedulingimeexpresses the algorithm execution time in secondspaeitiod

is the scheduling method chosen (preemptive, non-preempir defined subtasks). The results
presented were obtained for finding the first feasible sdeedu



All experiments were performed on a dual Pentium-111 600 Mhacessors with 768 MB
RAM, OS Linux, and compiler GCC 2.95.4. However, in order épidt the practical usability of
the proposed scheduling in more details, it is used an unethground vehicle (UGV) case study,
based on the work of [Sieh et al., 2001]. Although this agian was intended to show how to
deal with transient fault tolerance, it is used here to destrate the feasibility of the proposed
methodology.

In this case study, the type of vehicle is designed to traveezardous ground for collect-
ing various kinds of data (data, images,...). A semi-automas capability for making local path
decisions is triggered when it encounters unforeseen tisizarg., debris, rubble, land miles, etc.
A UGV have to provide two main services: its own mobility, arudlecting information of interest
for the controllers. The first one includes functions suclstasring, braking, and speed control
as well as the aiding in planning local autonomous moveme&he second service includes the
capture of data sensors, such as infrared, uwave, radascaom

Table 3: UGV Specification Model

Task Cp dp  Dp arrival  ds mins Inst.
Vehicle Braking 2 33 28 sporadic 60 250 100
Hazard Response - Local Path Planning 20 26 175 sporadic 200 0 2516
Sensor Data Fusion 10 80 400 periodic 7
Steering Control Loop 4 40 40 periodic 70
Steering Set Point 2 5 56 sporadic 60 200 50
Velocity Control Loop 4 30 40 periodic 70
Velocity Set Point 2 5 56 sporadic 60 200 50
System Management 5 60 100 periodic 28
CPU Status 5 100 200 periodic 14
Electrical System Status 5 100 200 periodic 14
Power Train Status 5 100 200 periodic 14

Table 3 shows the timing constraints for each task in thig cisdy. In accordance
with [Sieh et al., 2001], the tasks are all independent oféss task model has a processor uti-
lization factor of about 61%, which is not very low. As it caa boted, the sporadic tasks have
to be translated into periodic ones. This translation isdooted in such a way that the LCM
is minimized. The last column presents the number of tadlanmees for each task, taking into
accout that the LCM is equal to 2,800. In this case, the tdtahsks’ instances is 433. The
intermediate model is generated using a specific tool than@atically translates the initial spec-
ification into a time Petri net model specified using the PNNPetfi Net Markup Language)
formal [Weber and Kindler, 2003].

The proposed approach finds a feasible schedule after ampl{4761 states, where the
minimum number of states is 4701, in 324 seconds. It is wastimg the scheduling methodadi-
preemptive implying that all tasks are implicitly split into all poséé subtaskswhich certainly
increases time and space complexity. However, the timeopednce is not a major concern
mainly due to the fact that the algorithm compute the scleedti€ompile time. Another reason, is
due to the application domain considered (i.e. embeddddreg3, where schedule modifications
are not common. The prototype tool that implements the #ghgorshould be optimized, mainly
with respect to the tagging scheme.

8. Conclusions

This paper proposed a formal modeling methodology baseidh@Retri nets, and a framework for
pre-runtime scheduling synthesis using a reduced state spaloration algorithm. The practical
usability was depicted by a real-world case study, namelyramanned ground vehicle.

In spite of this analysis technique is not new, to the bestunfkmowledge, there is no
work reported similar to ours that models hard real-timdesys and finds (whether one exists) a
respective pre-runtime scheduling.



The real-time task specification can be very general, sincani have timing constraints,
and arbitrary intertask relations, such as precedencexataséoon relations. The formal modeling
methodology presented how to model real-time systems ubmgime Petri net formalism, and
also how to deal with undesirable states, for example,staith missed deadline.

The proposed algorithm is a depth-first search method onte fimed labeled transition
system derived from a time Petri net model. When searching feasible schedule, the algorithm
suffers from the state space explosion problem. In orderdimt@in the state space growth under
control, the proposed method uses minimization techniqGessidering the boundedness of the
proposed time Petri net model, the algorithm presentedyalfimds a schedule, provided that one
exists.

The system modeling and pre-runtime scheduling synthesfgoped can be used to syn-
thesize predictable and timely scheduled code. So, it isngld to generate complete executable
code from the formal model. This can be solved through tintei Rets with tasks, which is an
extension of time Petri nets, that annotates transitiotls prbgram code. Another extension is to
add some flexibility to the pre-runtime scheduling. Thiskjeon can be solved through providing
a small runtime scheduler for selecting different operatianodes [Fohler, 1994], where each
operational mode has a different pre-runtime schedulercagsd.
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