
IBM Systems and Technology Group

© 2006 IBM Corporation

Cell Broadband Engine Architecture Overview

Luke Browning (lukebrowning@us.im.com)

IBM Brazil Linux Technology Center (Hortolandia)

July 17, 2006

2

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Discussion topics

CBE HW architecture

Target Markets

CBE performance

Programming models

Programming hints

Components and Ecosystem

History and Present Status

3

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

CBE HW architecture

4

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Cell includes 1 Power Processor core + 8SPEs
provides more than 8x compute capability than
traditional processors

decoupled SIMD engines for growth and
scalability

1 64-bit Power Processor core micro-architecture
less complexity with in-order execution
minimal chip area / power budget
dual issue
dual thread SMT
VMX

8 SPE SIMD engines provide tremendous compute
power

dual-issue
dedicated resources

128 128-bit registers
256KB local store
2x16B/cycle DMA, etc.

up to 16-way SIMD for exploiting data
parallelism

Data ring for intra-processor and external
communication

96B/cycle peak bandwidth
16B/cycle memory b/w
2 X 16B/cycle BIF and IO

CBE HW Review

16B/cycle (2x)
16B/cycle

BIC

RRAC I/O

MIC

Dual
XDRTM

16B/cycle

PPU
L1

L2

32B/cycle

16B/cycle

EIB (up to 96B/cycle)

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

16B/cycle

64-bit Power Architecture w/VMX for
Traditional Computation

Synergistic Processor Elements for High (Fl)ops / Watt

5

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Cell Processor Real Time Features
Resource Reservation system for reserving bandwidth on shared units such
as system memory, I/O interfaces

L2 Cache Locking system based on Effective or Real Address ranges -
supports both locking for Streaming, and locking for High Reuse

TLB Locking system based on Effective or Real Address ranges or DMA
class.

Fully pre-emptible context switching capability for each SPE

Privileged Attention Event to SPE for use in contractual light weight context
switching

Multiple concurrent large page support in the PPE and SPE to minimize real-
time impact due to TLB misses

Up to 4 service classes (software controlled) for DMA commands (improves
parallelism)

Large page I/O Translation facility for I/O devices, graphics subsystems, etc -
minimizes I/O translation cache misses

SPE Event Handling facilities for high priority task notification

PPE SMT Thread priority controls for Low, Medium and High Priority
Instruction dispatch

6

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Cell/SPE Security – Secure Processing Vault

Resistant to Software Security Hacks

Does not rely on the security of the Operating System/Hypervisor

Even if the Operating System is hacked, Application and Data remain secure

Root of security/trust is with the application and not the Operating System/Hypervisor

A Processor Core and Memory becomes isolated from the rest of the cores and the system
to become a Secure Processing Vault

The Application and Content can execute safely within a Secure Processing Vault

Application

Content

Operating System

Hypervisor

Device Drivers

Other Applications

I/O DMA

7

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

Target Markets

8

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Next Generation Workloads: A Data centric view
Then

Text Text Streams

Audio Streams

Video Streams

Sensor Data
Streams

In-line selection &
 synthesis analytics

Information

The Cell system architecture enables the The Cell system architecture enables the
selection, synthesis and presentation of selection, synthesis and presentation of

relevant information for human relevant information for human
consumption consumption

RealReal--Time Information InteractionTime Information Interaction

Now

D
at

a

ba
nd

w
id

th

da
ta

ba
nd

w
id

th

information

bandwidth

Human synthesizes & filters data into
information and then formulates

knowledge based decisions

Human processes information to
formulate a knowledge based

decision

System synthesizes & filters data into
information

9

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Next Generation Workloads

Opportunities for Cell technology arise
where the rate of data produced far

outpaces the rate at which humans can
digest the data, interpret as information,
and apply to knowledge based decisions

… all in real time…

Imaging

Visualization

Presentation of Data

Analysis

Information Synthesis

Processing of Data

Digital

Media

Information Based

Medicine

Financial Services

Sector

Home Media/

Consumer Electronics

Firmware

e.g. Blades, Development platforms, etc

Operating Systems such as Linux

e.g. SPE exploitation, BE awareness
Device Drivers

Compilers

C, C++, Fortran, etc

Application Tooling and Environment
Programming model/APIs for accelerators and next generation

cluster

Cluster and Scale out Systems
Global operating systems, cluster file systems and protocols, et

Sector Specific Libraries

ISVs, Universities, Labs, Open Source, etc.

Applications

ISV, Universities, Labs, etc

HyperVisors

Base Libraries

e.g. SPE intrinsic, etc

Ubiquitous for all Markets

Market Segment Specific

Software Stack

10

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

CBE Performance

11

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Single-SPE MatrixMultiply Performance (Single Precision)

The original scalar-version of MatrixMultiply on SPE achieved only 0.42 GFlops.
Performance improved significantly with optimizations and tunings by

taking advantage of data level parallelism using SIMD
double buffering for concurrent data transfers and computation

optimizing dual issue rate, instruction scheduling, etc.

25.12

11.12

10.96

0.42

GFLOPs

98.1%690.4%0.2%80.1%0.5088.42M4.27MOptimize
d code

43.4%6510.2%2.6%41.4%0.71113.6M9.68MSIMD +
dbl buf

42.8%609.8%3.0%40.3%0.71113.8M9.78MSIMD
optimized

1.6%4726.3%11.4%26.1%1.05247.1M258.9MOriginal
(scalar)

Effic’y# of Used
Registers

Other
Stalls

Channel
Stalls

Dual
IssueCPI

of

Insts.
of
Cycles

12

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Cell Performance Comparison

BE’s performance is about an order of magnitude better than traditional GPPs for media and other
applications that can take advantage of its SIMD capability

BE can outperform a P4/SSE2 at same clock rate by 3 to 18x (assuming linear scaling) in various types of
application workloads

Type Algorithm 3.2 GHz GPP 3.2 GHz Cell
Perf
Advantage

Matrix Multiplication (S.P.) 25.6 Gflops* (w/SIMD) 200 GFlops (8SPEs) 8x (8SPEs)

Linpack (S.P.) 4k x 4k 25.6 GFlops* (w/SIMD) 156 GFlops (8SPEs) 6x (8SPEs)

HPC

Linpack (D.P.) 1k x 1k 7.2 GFlops (3.6GHz IA32/SSE3) 9.67 GFLops (8SPEs) 1.3x (8SPEs)
TRE .85 fps (2.7GHz G5/VMX) 30 fps (Cell) 35x (Cell) graphics
transform-light 128 MVPS (2.7GHz G5/VMX) 217 MVPS (one SPE) 1.7x (one SPE)
AES ECB encryp. 128b key 1.03 Gbps 2.06Gbps (one SPE) 2x (one SPE)
AES ECB decryp. 128b key 1.04 Gbps 1.5Gbps (one SPE) 1.4x (one SPE)
TDES ECB encryp. 0.13 Gbps 0.17 Gbps (one SPE) 1.3x (one SPE)
DES ECB encryp. 0.43 Gbps 0.49 Gbps (one SPE) 1.1x (one SPE)

security

SHA-1 0.9 Gbps 2.12 Gbps (one SPE) 2.3x (one SPE)
video
processing mpeg2 decoder (sdtv) 354 fps (w/SIMD) 329 fps (one SPE) 0.9x (one SPE)
*assuming 100% compute efficiency, achieving theoretical peak of 25.6GLOPS, in its single precision MatrixMultiply & Linpack implementation

13

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Cell Performance Summary
Cell's performance is about an order of magnitude better than GPP for
media and other applications that can take advantage of its SIMD
capability

• performance of its simple PPE is comparable to a traditional GPP performance

• each SPE is able to perform mostly the same as, or better than, a GPP with SIMD
running at the same frequency

• key performance advantage comes from its 8 de-coupled SPE SIMD engines with
dedicated resources including large register files and DMA channels

BE can cover a wide range of application space with its capabilities in
• floating point operations

• integer operations

• data streaming / throughput support

• real-time support

BE microarchitecture features are exposed to not only its compilers but
also its applications

• performance gains from tuning compilers and applications can be significant

• tools/simulators are provided to assist in performance optimization efforts

14

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

programming models

15

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Software Exploitable Parallelism on Cell BE

Data-level parallelism – SIMD
• SPE SIMD architecture

• VMX unit of PPE

Task-level parallelism – 8 SPEs + 2 PPE SMT

Data Transfer via SPE DMA engines (MFCs)
• Demo (TRE)

SMP Cell BE system / cluster level

16

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

HW aspects influencing viable Programming Models

PowerPC 64 compliant

Direct problem state mapping

VM address translation and protection

SW managed DMA engines

Coherent shared memory

Multi-threading

Multiple execution units

SIMD

Bandwidth Reservations

High speed EIB

High speed coherent interconnect

SPE Events

Aliased LS memory

DMA list supporting scatter / gather

Resource Management Tables

Atomic operations

Signal Notification Registers

Mailboxes

Large SPE context

Heterogeneous

DMA alignment & size restrictions

Limited local store size

17

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Effective Address
Space

Programming models in a single Cell BE

SPE LS

SPE LS

PPE thread

Large small

Multi-SPE

BE-level

PPE programming models
SPE Programming models
• Small single-SPE models

• Large single-SPE models

• Multi-SPE parallel programming
models

Integrated Object Format -Cell
BE Embedded SPE Object
Format (CESOF)
Multi-tasking SPEs
• Local Store resident multi-tasking

• Self-managed multi-tasking

• Kernel-managed SPE scheduling
and virtualization

18

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

PPE programming models

PPE is a 64-bit PowerPC core, hosting operating systems and
hypervisor

PPE program inherits traditional programming models
Cell BE environment: a PPE program serves as a controller or facilitator
• CESOF object format and runtime provides SPE image handles to a PPE program

• PPE program establishes a runtime environment for SPE programs

e.g. memory mapping, exception handling,

• PPE program starts and stops SPE programs

• It allocates and manages Cell BE system resources

SPE scheduling, hypervisor CBEA resource management

• It provides OS services to SPE programs

e.g. printf, file I/O

19

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Small single-SPE models

Single tasked environment
Small enough to fit into a 256KB- local store
Sufficient for many dedicated workloads
Separated SPE and PPE address spaces – LS / EA
Explicit input and output of the SPE program
• Program arguments and exit code per SPE ABI
• DMA
• Mailboxes
• SPE side system calls
Foundation for a function offload model or a synchronous RPC
model
• Facilitated by interface description language (IDL)

20

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Small single-SPE models – tools and environment

SPE compiler/linker compiles and links an SPE executable

The SPE executable image is embedded as reference-able RO data
in the PPE executable (CESOF)

A Cell BE programmer controls an SPE program via a PPE
controlling process and its SPE management library

• i.e. loads, initializes, starts/stops an SPE program

The PPE controlling process, OS/PPE, and runtime/(PPE or SPE)
together establish the SPE runtime environment, e.g. argument
passing, memory mapping, system call service.

21

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Small single-SPE models – a sample

/* spe_foo.c:
* A C program to be compiled into an executable called “spe_foo”
*/

int main(int speid, addr64 argp, addr64 envp)
{

char i;

/* do something intelligent here */
i = func_foo (argp);

printf(“Hello world! my result is %d \n”, i);

return i;
}

22

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Small single-SPE models – PPE controlling program

/* the spe image handle supplied by CESOF layer */
extern spe_program_handle spe_foo;

int main()
{

int rc, status;
speid_t spe_id;

/* load & start the spe_foo program on an allocated spe */
spe_id = spe_create_thread (0, &spe_foo, 0, NULL, -1, 0);

/* wait for spe prog. to complete and return final status */
rc = spe_wait (spe_id, &status, 0);

return status;
}

23

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Large single-SPE programming models

Data or code working set cannot
fit completely into a local store

The PPE controlling process,
kernel, and libspe runtime
establish the system memory
mapping as SPE’s secondary
memory store

The SPE program accesses the
secondary memory store via its
software-controlled SPE DMA
engine - Memory Flow Controller
(MFC)

SPE
Program

System Memory

PPE controller
maps system
memory for

SPE DMA trans.

Local Store

DMA
transactions

24

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Large single-SPE programming models – data cache

System memory as secondary memory store
• Manual management of data buffers

• Automatic software-managed data cache

Software cache framework libraries

Compiler runtime support

Global objects

System memory

SPE program
SW cache entries

Local store

25

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

Programming Hints

26

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

CBE General Programming Practices
Offload as much work onto the SPEs as possible

• Use the PPE as the control plane processor

Orchestrate and schedule the SPEs

Assist SPEs with exceptional events

• Use SPEs as data plane processors

Partitioning and Work allocation strategies
• Algorithmic

Possible self regulated work allocation

• Work queues

Single – SPE arbitrated

Works well when the work task are computationally significant and variable.

Multiple – PPE distributed

Works well when time to complete the task is predictable.

• Consider all domains in which to partition the problem.

Ex: Video application

– Space – partition scan lines or image regions to a different SPE

– Time – partition each frame to a different SPE

27

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

CBE General Programming Practices (cont)

Minimize atomic operations and synchronization events

Accommodate potential data type differences
• SPE is ILP32 (32-bit integers, longs, and pointers)

• PPE is either ILP32 or LP64 (64-bit longs and pointers)

28

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

PPE Programming Practices
Utilize multi-threading capabilities of the PPE

• When there are lots of L1 and L2 cache misses

Pointer chasing

Scatterd array / vector accesses

• When there is poorly pipelined floating-point operations

Lots of dependencies

Loops can not be effectively unrolled

Can not be SW pipelined

Self manage cache using data cache instructions

• PPE supports two forms of dcbt instructions

Classic (th=0)

– Prefetches a single cache line from memory into the L2 and L1

Enhanced (th=8)

– Prefetches up to a page of memory into the L2.

• The VMX’s data stream instructions are NoOp’d and should not be used.

29

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

SPE programmer managed data transfers
• Forces the programmer to be aware of all data accesses.

• Encourages thinking about data access patterns.

• Example 16 M-point FFT
Problem:

Traditional FFT requires n*log2(n) passes through the data.

Stages must be performed sequentially.

Solution:

Utilized a variation of the stride-by-1 algorithm proposed by David H.
Bailey based upon Stockham’s self-sorting FFT.

Processed 8 butterfly stages at once.

Reduced data accesses to 1/8th.

SPE Programming Practices

memory bound

30

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Performance hints and tips

Use local memory and local SPEs (via NUMA control and SPE
affinity API) whenever possible to avoid performance impact of
cache coherence protocol

Implement communication patterns minimizing contention for EIB
resources (ring segments, ramps,...)

Avoid synchronous access to system memory to avoid contention

Implement time critical code in assembler

Use prefetching and double buffering techniques to hide memory
latency

31

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

Components and
Ecosystem

32

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Cell Software Stack

Firmware

ApplicationsApplications

SLOFSLOF

powerpc architecture independent codepowerpc architecture independent code

Cell Broadband EngineCell Broadband Engine

LinuxLinux memory managementmemory management

device driversdevice drivers

gccgcc
ppc64, spu backendppc64, spu backend

glibcglibc

Hardware

RTASRTAS

Boot LoaderBoot Loader

powerpc- and cell-
specific Linux code

Low-level FWLow-level FW

schedulerscheduler

(pSeries)(pSeries) (PMac)(PMac) cellcell

User space

Linux common code

device driversdevice drivers

33

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell – Components

“Cell“: a new platform in the powerpc architecture
• As are pSeries, PMac, Maple
• Running 64 bit
Development on latest kernel

• Most of the code is in the kernel since 2.6.14-rc1
SPE support in virtual file system
SPE compiler, debugger, runtime environment
Hardware support

• Interrupt controller, I/O Memory Management Unit (IOMMU), RTAS, device
drivers

34

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell – Ecosystem

Specifications of the “Cell Broadband Engine Architecture“

IBM Full System Simulator

SDK “Samples and Libraries“

XLC compiler

Kernel and GNU toolchain

35

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

SPE support on kernel level

mem

{m,i,w}box

regs

/spu//spu/

my_app/my_app/

Virtual filesystem provides access to SPE ressources
• File operations manipulate SPEs
Subdirectories represent virtual SPEs. Contents (simplified!):

• mem (read/write, mmap, async I/O)

• mbox, ibox, wbox (read/write, poll)

• regs (read/write)
Hybrid threads: SPE code runs while proxy PPE thread blocks

• Memory protection for DMA transfers corresponding to PPE address
space

• SPU system calls executed by PPE proxy thread

36

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Exploiting SPEs: task based abstraction

APIs provided by user space library

PPE proxy thread controls SPE context
PPE and SPE calls for
• Mailboxes

• DMA

• Events

Simple spu runtime environment (newlib)
A lot of library extensions
• Encryption, signal processing, math operations

37

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

SPE exploitation – PPE programming interfaces

SPE Runtime Management Library (“libspe”)
• Thread management interfaces

spe_open_image, spe_create_thread, spe_wait, spe_kill, spe_get_event, ...

• Indirect access to Memory Flow Control (MFC) features

spe_mfc_get, spc_read_out_mbox, spe_write_signal, spe_read_tag_status, …

• Intended to be portable across operating systems

• On Linux, implemented on top of spufs kernel API

Implementation of spe_create_thread
• Allocate virtual SPE context in spufs (spu_create)

• Load SPE application code into context

• Start PPE thread using pthread_create

• Within new thread, commence SPE execution (spu_run)

38

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Exploiting SPEs: direct mapping in problem space

SPE Library interface spe_get_ps_area()
• SPU registers are memory mapped into user address space of the

controlling PPE program

• Target SPE thread must have been created with SPE_MAP_PS

Applications can manipulate processor registers to control and
perform MFC operations
• Initiate DMA transfers

• send messages to mailboxes

• send signals

No additional library calls need to be made
Can also be used to perform SPE to SPE communications

39

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

gcc support

PPE: handled by rs6000 back end

• Processor-specific tuning, pipeline description

SPE: new spu back end

• Built as cross-compiler

• Handles vector data types, intrinsics

• Middle-end support: branch hints, aggressive if-conversion

• Future: gcc port exploiting auto-vectorization?

cell: no special spu support today

• Future: single source mixed-architecture compiler?

40

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

SPE
Source

Linkable
Linkable

Linkable
SPE

Linkable

SPE Compiler SPE Linker

SPE ELF
Executable

File

Linked SPE
Executable

Image

embedspu

CESOF
PPE

Linkable

CESOF object

41

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

PPE
Source

PPE Compiler PPE Linker

SPE Loader

SPE
Local Store

SPE
Executable

Image

CESOF
PPE

Linkable

System
Memory

Embedded
SPE Image

Loaded PPE
Executable

Image

PPE ELF
Executable

File

Linked PPE
Executable

ImageLinkable
Linkable
PPE

Linkable

PPE Loader
Combined CBE executable

http://www.embedded.com/showArticle.jhtml?articleID=188101999

42

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Debugging Cell applications

SPE-only debugger
• Attach just to single SPE thread of a process

• Use spufs instead of ptrace to manipulate state

GDB child-session support
• Master PPE GDB spawns child-GDB sessions for SPEs

• Unified user interface provides access to all GDBs

GDB multi-architecture target
• Single GDB session to debug full Cell process

• Nontrivial implementation issues ...

43

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell

History and Present Status

44

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell – initial disclosure and distro: 2005

Initial disclosure – 2005/04/28
http://ozlabs.org/pipermail/linuxppc64-dev/2005-April/003878.html
• new platform (called BPA those days)
• spufs
• support for EIC, IIC, IOMMU, PCI
• drivers for console, NVRAM, watchdog
• libspe (called libspu those days) – 2005/05/13
• Gigabit Ethernet – 2005/06/28
Initial distro – 2005/07/29
http://www.bsc.es/projects/deepcomputing/linuxoncell/
• Fedora Core 3-based RPMs
GNU toolchain from Sony to BSC and BSC to public – 2005/10
• spu-gcc 3.4.1
• spu-binutils 2.15

45

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell – Limited Availability: 2005/09/30
Linux on Cell – base
• PPC 64 kernel 2.6.13 with base Cell support
• Spufs
• Device support: IOMMU, EIC/IIC, Gigabit Ethernet, console, flash update, NVRAM,

PCI, watchdog
http://ozlabs.org/pipermail/linuxppc64-dev/2005-
September/005815.html

• API for SPE enablement: Load and execute code on SPE, SPE-initiated DMA,
mailboxes, signals → libspe
http://ozlabs.org/pipermail/linuxppc64-dev/2005-
October/005860.html

Basic toolchain
• gcc 3.4.1 for SPE
• Binutils 2.15
Packaged for and tested with Fedora Core 3
• Distribution through Barcelona Supercomputing Center
http://www.bsc.es/projects/deepcomputing/linuxoncell/

46

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell – SDK 1.0: 2005/11/09

First version of a basic, but fully functional Cell dev’t kit
• Fixes in Linux kernel (2.6.14), libspe and GNU toolchain
• gdb
• xlc
• Full System Simulator
• C99 environment on SPEs
• Samples and libraries
• Fedora Core 4-based RPMs
• scripts for full development environment on Intel
• CBEA specification available

47

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Linux on Cell – SDK 1.1: 2006/07/14

Linux kernel (2.6.16)
Dual BE support
improved GNU (4.0.2) and XLC/C++ tool chains
• C++ support added to XL C compiler for PPU and SPU applications

Binutils upgraded (2.16.1)
Support for GDB server running in both PPEs and SPEs
NUMA support
Quaternion Julia Set sample
Improved installation using revamped process and RPMs
Single ISO image is available
Simulator host and target FC5

48

Systems and Technology Group

IBM Linux Technology Center © 2006 IBM Corporation

Resources

IBM developerWorks
• http://www-128.ibm.com/developerworks/power/Cell/
IBM developerWorks Library

• http://www-306.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

IBM alphaWorks and CBE SDK
• http://www.alphaworks.ibm.com/topics/Cell
Architecture Documents
• http://www-128.ibm.com/developerworks/power/Cell/downloads_doc.html
Articles
• http://www-128.ibm.com/developerworks/power/Cell/articles.html
IBM developerWorks Cell BE forum
• http://www-128.ibm.com/developerworks/forums/dw_forum.jsp?forum=739&cat=46
CBE kernel release site
• http://www.bsc.es/projects/deepcomputing/linuxonCell/?S_TACT=105AGX16&S_CMP=D

WPA
CBE kernel mailing list
• https://ozlabs.org/mailman/listinfo/cbe-oss-dev

