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Abstract. Semaphores are software mechanisms designed to synchronize 

processes. The name seems to recall a traffic signal but diversely from the 

original idea behind them, different implementations can be found in popular 

Operating Systems as well as different definitions in the most adopted 

introductory books. Due to these differences, care is necessary in knowing if 

an implementation of semaphores is compatible with the definition found in 

the adopted book, otherwise could become confused to students. This article 

presents and compares semaphores definitions and implementations, rescuing 

three types of them. It is a warning to teachers on semaphore semantics and 

implementations, considering that they are usually used by applications 

programmers where kernel mechanisms cannot be used. 

1. Introduction 

Semaphores are some of the mechanisms that can support mutual exclusion in order to 

avoid race conditions between processes. In doing so, they synchronize the processes 

regarding the access to a common resource. 

There are several ways in which semaphores were designed and implemented since 

Dijkstra, in mid 1960s, applied the idea of mutual exclusion (THOCP, 2008). In a one-

page paper he introduced the mutual exclusion situation along with the concepts of 

critical section and the deadlock problem (Apt, 2002). 

Dijkstra’s original idea on semaphores is discussed in his manuscript EWD 51, written 

in Dutch (Apt, 2002). After being implemented, it was presented in a second occasion in 

an American journal (Dijkstra, 1968). There he presents a data type with value domain 

restrained to integers, together with three possible operations that consider one 

semaphore instance: one for initialization, and the other two for conditional 

modification of the semaphore value and conditional state modification of one process 

that is operating or one that operated on the semaphore. 

Each semaphore instance has an associated control structure for processes. If a process 

performs a P operation on a semaphore instance which has the value zero, that process 

has its execution blocked and is added to the semaphore structure, until a future 

execution of a V operation by another process. When that other process operates on the 

semaphore by performing a V operation, and there are processes in the respective 

structure, one of them is removed from there and goes to the ready state to resume 

execution. The semaphore value is not modified. It was, according to Dijkstra (1968), 

logically immaterial which of the processes is chosen in some contexts. But it might not 

happen that any blocked process stay in the semaphore structure indefinitely (Dijkstra, 
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1971). If there is no process in the semaphore structure its value is incremented by one. 

The P and V operations must be atomic, i.e., the process whose P or V operation is 

under execution may not lose the CPU during that execution to run another operation, at 

least on the same semaphore. They are critical sections that require mutual exclusion. 

Although semaphores are Dijkstra’s idea and were considered effective synchronization 

mechanisms at the Operating System (OS) level, since their appearance: they were 

implemented differently in different OSs; they were the base of other mechanisms for 

process synchronization; their operations received different naming conventions 

throughout their implementations and theoretical definitions in books.  

All these facts very likely cause confusion and misunderstanding to students who are 

assigned to learn process management as happens in OSs introductory courses. 

Considering the importance of learning and using synchronization mechanisms by 

application programmers where kernel mechanisms cannot be used, and without 

considering symmetric multiprocessing or multicore computer architectures, in the 

following section are discussed different versions for definitions of P and V operations, 

or equivalents, which are present in the most highly considered introduction books on 

OSs. Implementations in the most popular OSs are also presented for semaphores and 

other mechanisms based on Dijkstra’s idea. The goal is to show that some of the 

implementations do not offer exactly what must be expected and that implementations 

are not compatible to definitions.  

The paper context, regarding characteristics of hardware and basic software, is related to 

computers with one mono core CPU and multitasking scheduling, although its 

information is valuable to other scenarios. 

2. Semaphore Definitions 

Basically there are three different types of semaphore definitions in the most adopted 

OSs books. They are discussed next. 

First Definition – “Weak” Semaphores 

Silberschatz et al. (2004) and Stallings (2004) discuss semaphores quite different from 

Dijkstra. First is the naming convention, with the substitution of P by wait and V by 

signal. Second, the semaphore value is always decremented in the equivalent P 

implementation and incremented in the V equivalent implementation. For Dijkstra, zero 

is the minor value for a semaphore. With this definition, the semaphore value could be 

negative while there are blocked processes waiting for their execution to continue. There 

is also the necessity to re-execute the P equivalent implementation by the process that is 

removed from the semaphore structure, which is a queue. This re-execution is 

implemented by not modifying the PC register value when the process goes blocked.  

This semaphore semantics allows starvation to happen because there is nothing that 

prevents new processes from performing an equivalent P operation that decrements the 

semaphore value before the recently removed process has access to the CPU and restarts 

its execution, by re-executing its equivalent P operation, which results in a new insertion 

in the structure. According to Reek (2002), this is a weak semaphore, except by the non 

busy-waiting implementation of the P equivalent operation, which he considers part of a 

2466



  

weak semaphore and is not present in this first definition. 

Second Definition – Blocking-Set Semaphores 

Tanenbaum (2008) and Tanembaum and Woodhull (2006) present semaphores as data 

types with three operations. Their implementation is almost similar to Dijkstra´s 

definitions, except by the naming convention that substitutes P by down and V by up, 

and by the policy used to release one process when a V equivalent operation is executed. 

The semaphore value is non-negative. An up on a semaphore, with processes on its 

structure, causes a random pick of what process is removed, differently from Dijkstra’s 

ideas (Dijkstra, 1971). After an up, the semaphore will still be with a zero value, but 

there will be one fewer process waiting on it.  

Because all computational random functions are really pseudo random generators, it is 

possible, although unlikely, that a process is never removed from the semaphore 

structure, while the value is zero, configuring a starvation situation. This same problem 

is considered in Dijkstra´s definitions by some authors like Reek (2002), who sees no 

guarantee of justice in the picking strategy. This definition is named blocking-set by 

Stark (1982), because the group of blocked processes may be modeled as a set, from 

which a random process is unblocked when an equivalent V operation is executed. 

Third Definition – Blocking-Queue Semaphores 

Deitel et al. (2004) and Deitel (1984) write on a binary semaphore, which has only two 

possible values, zero or one. If the value is one, it means that there are no blocked 

processes in the semaphore structure. The execution of one or more V operations has no 

effect upon this one value. These semaphores are used for mutual exclusion, i.e., they 

allow only one process in a critical section at once. Milenković (1992) writes on general 

semaphores and presents the same definitions of the previous authors.  

Deitel et al. (2004), Deitel (1984) and Milenković (1992) also changed the naming 

convention, using wait for P and signal for V. The wait operation, if there are no 

processes in the structure, allows the calling process to enter into its critical region. This 

is done after decrementing the semaphore value to 0, which means that the critical 

region is protected. Otherwise, it places the process in a blocking queue. This queue is 

exactly the difference that Reek (2002) considers absent in Dijkstra´s definition but 

definitely is present in the 1971 work by Dijkstra (1971) and which imposes a fair 

mechanism that avoids starvation.  

The signal operation indicates that a process that was in its critical region now is 

outside, leaving it available. A process in the structure, if any, may now enter its critical 

region. A FIFO queuing discipline is assumed for the blocked processes.  

This definition gives higher precedence to released processes than to new arrivals. It is 

named blocking-queue by Stark (1982), because the blocked processes are kept in a 

FIFO-queue instead of a set.  

The Semaphore Metaphor 

All of the previous definitions for semaphores are used for learning purposes. Those that 

increase the semaphore value, even in the presence of blocked processes in the same 
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semaphore, are better suited for the adoption of the analogous result of a traffic 

semaphore, a train cross-over signal, or a binary lock. These metaphorical figures are 

better understood by students, once they already familiar with how similar mechanisms 

work in the real world. But, as discussed earlier, those are weak definitions for the 

necessary mechanisms that obtain mutual exclusion and can produce starvation. 

On the other hand, those definitions that do not change the semaphore value, when there 

is at least one process waiting the semaphore structure, sometimes are cumbersome to 

understand by the students, depending on the policy to choose what process will 

proceed. If the policy to choose is not fair, there is the possibility for processes stay 

indefinitely blocked in a semaphore. Those definitions can be also considered weak, 

although in a first sight seem to be strong. 

Definitions that use a queue as the structure where processes wait in a semaphore are 

really the ones that are strong. And the queue metaphor could be used for learning 

purposes. Students know how works a civilized line of persons in the real world. This 

similar mechanism can be used to explain how processes stay in a semaphore with its 

zero value, and which process proceeds when a V operation is executed. 

3. Semaphore Implementations 

Reek (2002) alerts that if the semaphore mechanism provided by a given OS presents a 

different semantics than the one described in an adopted textbook, students trying to 

write and debug synchronization programs are likely to become confused. 

Table 1 presents a comparison of four semaphore implementations, which are usually 

considered in laboratory assignments of introductory courses: POSIX (2004), System V 

(Dustan; Fris, 1995), Mac OS (Apple, 2009) and Win 3.2 (Microsoft, 2008). 

Table 1. Characteristics of semaphore implementations. 

 POSIX System V Mac OS Win 3.2. 

P naming sem_wait semop down WaitOne 

Uses busy-

waiting 

instructions 

Yes No No No 

V naming sem_post semop up Release 

V semantics a one is added to the 

semaphore value 

and one of the 

processes, if 

existent, is removed 

from the structure 

several processes 

may be released 

simultaneously 

several threads may 

be released 

several threads may 

be released 

Released process 

must check the 

semaphore value 

again to continue 

its execution 

Yes depends on the 

scheduler strategy 

for the next process 

to be executed 

Yes Yes 

Type  weak partially weak partially weak partially weak 

OS Linux Mac OS and Linux Mac OS Windows 

Obs. (1) (2)  (3) (3) 

 

(1) According to Lewis and Berg (1998), a POSIX semaphore implementation uses another 

synchronization mechanism, i.e., mutex, in order to obtain mutual exclusion for the access to the 
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semaphore value. 

(2) The semop system call can be used to specify many operations on a semaphore set through an array 

structure. Each operation is described by three inputs: an index, a value and some flags. The index 

defines one semaphore in the set and the value defines the semantics to be applied (P equivalent with 

a negative value or a V equivalent with a positive value). The OS tests whether or not all of the 

operations would succeed. An operation succeeds if the correspondent value added to the semaphore 

value would be greater than zero or if both the operation value and the semaphore value are zero. A 

zero or negative value means to wait (blocked) for the semaphore value to reach a positive value, but 

only if the set of flags do not point out that the system call is non-blocking. Every time a positive 

value is added, the OS must check if any of the blocked processes may now have applied its 

semaphore operations. If it is possible, the pending operations are applied and the process is released. 

This checking-to-release task is repeated, until no more operations can be applied. There is no 

information if this checking is based on the arrival order.  

(3) Instead of processes, MacOS and Win 3.2 semaphores apply to threads.  

A semaphore is considered partially weak because its implementation may cause 

starvation due to the amount of processes or threads that may be released when an 

equivalent V operation is executed, which requires that those released processes or 

threads compete among themselves and with new arrivals to enter a critical section. 

Usually available semaphores in Linux are also available in other Unix OSs. 

There is almost no compatibility between the four considered implementations and the 

reviewed definitions in OS introductory books. The definition by Silberschatz et al. 

(2004) and Stallings (2004) is the one that gets closer to the POSIX implementation. 

If strong semaphores are desired, they will need to be implemented in top of an available 

implementation. 

4. Conclusions 

This paper discusses the problematic situation that happens when teaching students on 

synchronization and mutual exclusion. Three types of semaphores are presented together 

with a comparison of four of their implementations. OS teachers should be aware of 

what type of semaphores is defined in their adopted books and what are used in lab 

assignments in order to be able to clarify probable unexpected results. 

Reek calls strong semaphores (Reek, 2002) those implementations that, upon the 

execution of a V operation or equivalent, do not need to recheck the semaphore value 

after their removal from the structure because the value was not modified. Thus a 

removed process has priority over new processes that attempt to decrease the value. Two 

of the three presented definitions are classified as strong, their difference is concerned to 

the strategy considered to release the blocked process. One grants fairness, the other not. 

None of the reviewed semaphore implementations grant fairness, which is very difficult 

to achieve. Nevertheless, it seems interesting to search answers to the following 

questions: (a) Why are there differences in semaphore implementations? (b) Could 

fairness in solutions to theoretical and practical problems be guaranteed? 

Those answers will be the focus of future work together with the analysis of other 

implementations. 
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