
Configuration Management of Embedded Operating Systems
using Application-Oriented System Design

Gustavo Fortes Tondello and Antônio Augusto Fröhlich
Laboratory for Software/Hardware Integration (LISHA)

Federal University of Santa Catarina (UFSC)
PO Box 476 - 88049-900 Florianópolis - SC - Brazil

E-mail: {tondello | guto}@lisha.ufsc.br
Homepage: http://epos.lisha.ufsc.br/

Abstract

This paper presents an alternative to achieve automatic
run-time system generation based on the Application Ori-
ented Systems Design method. Our approach relies on a
static configuration mechanism that allows the generation
of optimized versions of the operating system for each of
the applications that are going to use it. This strategy is of
great value in the domain of high performance computing
since it results in performance gains and resource usage op-
timization.

Keywords: application-oriented system design, embedded
operating systems, configuration management.

1. Introduction

Previous studies have demonstrated that embedded and
high performance applications do not find adequate run-
time support on ordinary all-purpose operating systems,
since these systems usually incur in unnecessary overhead
that directly impact application’s performance [1, 15]. Each
class of applications has its own requirements regarding the
operating system, and they must be fulfilled accordingly.

The Application-Oriented System Design(AOSD)
method [6] is targeted at the creation of run-time sup-
port systems for dedicated high performance computing
applications, in particular embedded, mobile and paral-
lel ones. Anapplication-oriented operating systemarise
from the proper composition of selected software com-
ponents that are adapted to finely fulfill the requirements
of a target application. In this way, we avoid the tradi-
tional “got what you didn’t ask for, yet didn’t get what you
needed” effect of generic operating systems. This is partic-
ularly critical for high performance embedded applications,

for they must often be executed on platforms with se-
vere resource restrictions (e.g. simple microcontrollers,
limited amount of memory, etc).

Application-Oriented System Design has been cor-
roborated by several experiments conducted in the scope
of project EPOS [7], including a communication sys-
tem for clusters of workstations interconnected in a
MYRINET network that delivered parallel applications un-
precedented communication performance—lowest la-
tency for short messages and maximum bandwidth for
large ones [9].

Nonetheless, delivering each application a tailored run-
time support system, besides requiring a comprehensive set
of well-designed software components, also calls for so-
phisticated tools to select, configure, adapt and compose
those components accordingly. That is,configuration man-
agementbecomes a crucial to achieve the announced cus-
tomizability.

This paper approaches configuration management in
application-oriented operating systems, taking the strate-
gies and tools currently deployed in EPOSas a case-study
of automatic operating system configuration for embed-
ded and parallel applications. The following sections
describe the basics of the Application-Oriented Sys-
tem Design method, a strategy to automatically config-
ure component-based systems and a strategy to describe
the components for that purpose. Subsequently, the cur-
rent prototypes are discussed along with a real exam-
ple of the configuration process, followed by an outline
of the next steps planed for the project along with au-
thor’s conclusions.

2. Application-Oriented System Design

The idea of building run-time support systems through
the aggregation of independent software components is be-
ing used, with claimed success, in a series of projects



[3, 5, 14, 2]. However, software component engineering
brings about several new issues, for instance: how to par-
tition the problem domain so as to model really reusable
software components? how to select the components from
the repository that should be included on an application-
specific system instance? how to configure each selected
component and the system as a whole so as to approach
an optimal system?

Application-Oriented System Design proposes some al-
ternatives to proceed the engineering of a domain towards
software components. In principle, an application-oriented
decomposition of the problem domain can be obtained
following the guidelines ofObject-Oriented Decomposi-
tion [4]. However, some subtle yet important differences
must be considered. First, object-oriented decomposition
gathers objects with similar behavior in class hierarchies
by applying variability analysis to identify how one entity
specializes the other. Besides leading to the famous “frag-
ile base class” problem [12], this policy assumes that spe-
cializations of an abstraction (i.e.subclasses) are only de-
ployed in presence of their more generic versions (i.e.su-
perclasses).

Applying variability analysis in the sense ofFamily-
Based Design[13] to produce independently deployable
abstractions, modeled as members of a family, can avoid
this restriction and improve on application-orientation. Cer-
tainly, some family members will still be modeled as spe-
cializations of others, as inIncremental System Design[10],
but this is no longer an imperative rule. For example, in-
stead of modeling connection-oriented as a specialization of
connectionless communication (or vice-versa), what would
misuse a network that natively operates in the opposite
mode, one could model both as autonomous members of
a family.

A second important difference between application-
oriented and object-oriented decomposition concerns
environmental dependencies. Variability analysis, as car-
ried out in object-oriented decomposition, does not em-
phasizes the differentiation of variations that belong
to the essence of an abstraction from those that em-
anate from the execution scenarios being considered for
it. Abstractions that incorporate environmental depen-
dencies have a smaller chance of being reused in new
scenarios, and, given that an application-oriented op-
erating system will be confronted with a new scenario
virtually every time a new application is defined, allow-
ing such dependencies could severely hamper the sys-
tem.

Nevertheless, one can reduce such dependencies by ap-
plying the key concept ofAspect-Oriented Program-
ming [11], i.e. aspect separation, to the decomposition pro-
cess. By doing so, one can tell variations that will shape
new family members from those that will yield scenario as-

pects. For example, instead of modeling a new member for
a family of communication mechanisms that is able to op-
erate in the presence of multiple threads, one could
model multithreading as a scenario aspect that, when acti-
vated, would lock the communication mechanism (or some
of its operations) in a critical section.

Based on these premises, Application-Oriented Systems
Design guides a domain engineering procedure (see Fig-
ure 1) that models software components with the aid of
three major constructs: families of scenario-independent ab-
stractions, scenario adapters and inflated interfaces.

Domain
Problem

Family

Infl. Inter.

MemberMember Member

Member

aspectfeature
config.

Families of Abstractions

Figure 1. Overview of application-oriented
domain decomposition as regards abstrac-
tions.

Families of scenario independent abstractions

During domain decomposition, abstractions are identi-
fied from domain entities and grouped in families accord-
ing to their commonalities. Yet during this phase, aspect
separation is used to shape scenario-independent abstrac-
tions, thus enabling them to be reused in a variety of sce-
narios. These abstractions are subsequently implemented to
give rise to the actual software components.

The implementation of the members of a family of ab-
stractions is not restricted to the use of specialization as we
would do in object-orientation, although it can occur, when
convenient. For example, members could be implemented
as classes conjunctly distributed as a package through ag-
gregation or composition. Afterwards, some families may
contain mutually exclusive members, that is, only one of
the members can be present in the system configuration at a
time.



Scenario adapters

As explained earlier in this article, Application-Oriented
System Design dictates that scenario dependencies must be
factored out asaspects, thus keeping abstractions scenario-
independent. However, for this strategy to work, means
must be provided to apply factored aspects to abstractions in
a transparent way. The traditional approach to do this would
be deploying anaspect weaver, though thescenario adapter
construct [8] has the same potentialities without requiring
an external tool. A scenario adapter wraps an abstraction,
intermediating its communication with scenario-dependent
clients to perform the necessary scenario adaptations.

Inflated interfaces

Inflated interfaces summarize the features of all mem-
bers of a family, creating a unique view of the family as
a “super component”. It allows application programmers to
write their applications based on well-know, comprehensive
interfaces, postponing the decision about which member of
the family shall be used until enough configuration knowl-
edge is acquired. The binding of an inflated interface to one
of the members of a family can thus be made by automatic
configuration tools that identify which features of the fam-
ily were used in order to choose the simplest realization that
implements the requested interface subset at compile-time.

3. Software Component Configuration

An operating system designed according to the premises
of Application-Oriented System Design, besides all the
benefits claimed by software component engineering, has
the additional advantage of being suitable for automatic
generation. The concept of inflated interface enables an
application-oriented operating system to be automatically
generated of out of a set of software components, since in-
flated interfaces serve as a kind of requirement specification
for the system that must be generated.

An application written based on inflated interfaces can
be submitted to a tool that scans it searching for references
to the interfaces, thus rendering the features of each fam-
ily that are necessary to support the application at run-time.
This task is accomplished by a tool, theanalyzer , that
output an specification of requirements in the form of partial
component interface declarations, including methods, types
and constants that were used by the application.

The primary specification produced by the
analyzer is subsequently fed into a second tool,
the configurator , that consults a build-up database
to create the description of the system’s configura-
tion. This database holds information about each compo-
nent in the repository, as well as dependencies and com-

position rules that are used by theconfigurator to
build a dependency three. Additionally, each compo-
nent in the repository is tagged with a “cost” estimation,
so that theconfigurator will chose the “cheapest” op-
tion whenever two or more components satisfy a depen-
dency. The output of theconfigurator consists of a set
of keys that define the binding of inflated interfaces to ab-
stractions and activate the scenario aspects eventually iden-
tified as necessary to satisfy the constraints dictated by
the target application or by the configured execution sce-
nario.

The last step in the generation process is accomplished
by thegenerator . This tool translates the keys produced
by the configurator into parameters for a statically
metaprogramed component framework and causes the com-
pilation of a tailored system instance. An overview of the
whole procedure is depicted in Figure 2

configurator generatoranalyzer

info

application
program

frameworkinflated interfaces

system instance

aspects

componentsadapters

Figure 2. An overview of the tools involved in
automatic system generation.

4. Software Component Description

The strategy used to describe components in a repos-
itory and their dependencies plays a key role in making
the just described configuration process possible. The de-
scription of components must be complete enough so that
the configurator will be able to automatically iden-
tify which abstractions better satisfy the requirements of the
application, and this without generating conflicts or invalid
configurations and compositions.

The strategy to describe components proposed here,
could indeed be taken further as to specify compo-
nents, for it encompasses much of the information needed
to implement components, including their interfaces and re-



lationships to other components. It is based on a description
declarative language implemented around theExtensi-
ble Markup Language(XML) [16] and target at the de-
scription of individual families of abstractions1. The
most significant elements in the language will be ex-
plained next, taking as basis the correspondingDocument
Type Definition) (DTD) fragments.

4.1. Families of abstractions

The declaration of a family of abstractions in our lan-
guage consists of the family’s inflated interface, an optional
set of dependencies, and optional set of traits, its common
package and a set of family members (software compo-
nents), like this:

<! ELEMENTfamily (interface, dependency*,
trait*, common, member+) >

The inflated interface of a family, as explained earlier,
summarizes the features of the whole family and is speci-
fied as follows:

<! ELEMENT interface (type, constant,
constructor, method) *>

The common package of a family holds type and con-
stant declarations that are common to all family members.
It is specified as:

<! ELEMENTcommon (type, constant) *>

The member element shown bellow is used to describe
each of the members in a family. It is at the heart of the au-
tomatic configuration process, enabling tools to make the
proper selection while looking for inflated interface realiza-
tions. A family member is declared as:

<! ELEMENTmember (super, interface, trait,
cost, feature, dependency) *>

Thesuper element enables a member to inherit declara-
tions of other members in the family, allowing for the cre-
ation of incremental families much as inIncremental Sys-
tem Design[10]. A member’s interface designates a total or
partial realization of the family’s inflated interface in terms
of memberstype , constant , constructor andmethod .
Elementtrait , which can also be specified for the fam-
ily as whole, designates a configurable information that can
be set by users, via configuration tools, in order to influ-
ence the instantiation of a component2. A trait of a com-
ponent can also be used to specify configuration parameters

1 A complete description of the software component repository is ob-
tained simply by merging individual families’ descriptions.

2 Traits are made available at compile-time to the static metaprograms
that build up the component framework.

that cannot be automatically figured out, such as the number
of processors in a target machine and the amount of mem-
ory available.

Additionally, each member of a family is tagged with
a relativecost estimation that is used by the configura-
tion tools in case multiple members satisfy the constraints
to realize the family’s inflated interface in a given execu-
tion scenario. This cost estimation is currently rather sim-
plistic, consisting basically of an overhead estimation made
by the component developer. More sophisticate cost mod-
els, including feed-back from the configuration tools, are
planed for the future.

4.2. Functional dependencies

Although we can use theanalyser tool to discover
the dependencies of the application regarding the families’
interfaces, this tool cannot be used to discover the depen-
dencies that a family’s implementation has on another one.
Thus, this kind of depency must be explicited by the pro-
grammer through thedependency member. This depen-
dency may happen to the entire family or just on individual
members.

The dependency element has only one attribute that
describes the name of the family whose dependency con-
sists. We should also include in this dependency descrip-
tion the partial interface with the constructors and meth-
ods of one family called by the other one, allowing the
configurator to be able to resolve any kind of depen-
dency. However, in the actual development stage of Project
EPOS we have never identifyied a family of abstractions
whose members had dependencies on another family dif-
ferentiated by the partial interface description. These differ-
ences usually occur regarding non-functional dependencies
(described next). As so, we have decided to keep the sim-
pler description of the family name only. In the future, if
the situation where the partial interface is necessary to de-
cide which abstraction needs to be selected to satisfy the de-
pendency may occur, our model will have to be extended to
support this detail level.

4.3. Non-functional properties and dependencies

The description of the interfaces in a family of abstrac-
tions is the main source of information for the proposed
configuration tools, but correctly assembling a component-
based system goes far beyond the verification of syntactic
interface conformance: non-functional and behavioral prop-
erties must also be conveyed. For this purpose, our com-
ponent description language includes two special elements:
feature anddependency . These elements can be applied
to virtually any other element in the language to specify
features provided by components and dependence among



components that cannot be directly deduced from their in-
terfaces. Enriching the description of components with fea-
tures and dependencies can significantly improve the cor-
rectness of the assembly process, helping to avoid inconsis-
tent component arrangements.

For instance, consider a family of wireless network ab-
stractions. Some members could declare a “reliable” fea-
ture, making them eligible to support an application whose
execution scenario demands for reliable communication.
Similarly, members of a family of communication protocols
could specify the dependency on a “reliable” wireless net-
work infrastructure, while other could implement the fea-
ture themselves.

A feature has a name and a value. The name should be
regarded as a meaningful feature in the application domain.
Considering the example above, we could specify the reli-
able feature of a wireless network as follows:

<family name ="Wireless_Network">
<interface >...</ interface >
<common>...</ common>
<member name="Wi-Fi">

<interface >...</ interface >
<feature name ="reliable" value ="false"/>

</ member>
</ family >

and the dependency in the protocol family, extendend to al-
low the inclusion of innerfeature elements, as:

<family name ="Wireless_Protocol">
<interface >...</ interface >
<dependency family ="Wireless_Network"/>
<common>...</ common>
<member name="Active_Message">

<interface >...</ interface >
<dependency family ="Wireless_Network">

<feature name ="reliable" value ="true"/>
</ dependency >

</ member>
</ family >

It is important to mention that the fact of the
Active_Message member of theWireless_Protocol

family requiring a reliable Wireless_Network

does not summarily excludes theWi-Fi member: the
configurator would first check whether a scenario as-
pect is available that could be applied to a non-reliable net-
work in order to make it behave as a reliable one. In
the particular case of EPOS, such a scenario aspect ex-
ists and would enable the correct integration of both com-
ponents.

5. Example

To validate the ideas proposed here, we have developed
a very simple example to demonstrate the aplication of the

concepts.
Our example consists on a C++ implementation of the

Philosofer’s Dinner using two families of EPOS abstrac-
tions:Thread andSynchronizer . The program was writ-
ten using the inflated interfaces of each family, without
specifying the member implementation to use.

The output of theanalyser for our application was:

<interface name ="Synchronizer">
<constructor >

<parameter type ="int"/>
</ constructor >
<method name ="p" return="void"/>
<method name ="v" return="void"/>

</ interface >

<interface name ="Thread">
<constructor >

<parameter type ="System::Int::
Thread_Common::Self const&">

</ constructor >
<constructor >

<parameter type ="int (*)(int)"/>
<parameter type ="int"/>
<parameter type ="short const&"/>
<parameter type ="short const&"/>

</ constructor >
<method name ="suspend" return="void"/>
<method name ="wait" return="void">

<parameter type ="int *"/>
</ method >
<method name ="yield" return="void"/>

</ interface >

Now we must enter this data into theconfigurator .
For the selection of the member of theSynchronizer fam-
ily, it would consult the XML file of the family, partly listed
bellow:

<family name ="Synchronizer" type ="
abstraction" class="dissociated">

<interface >
...
<method name ="id" return="const Id &"/>
<method name ="valid" return="bool"/>
<method name ="lock" return="void"/>
<method name ="unlock" return="void"/>
<method name ="p" return="void"/>
<method name ="v" return="void"/>
<method name ="wait" return="void"/>
<method name ="signal" return="void"/>
<method name ="broadcast" return="void"/>

</ interface >
<common>...</ common>
<member name="Mutex" type ="inclusive" cost

="1">
<interface >

...
<method name ="id" return="const Id &"/>



<method name ="valid" return="bool"/>
<method name ="lock" return="void"/>
<method name ="unlock" return="void"/>

</ interface >
...

</ member>
<member name="Semaphore" type ="inclusive"

cost ="5">
<interface >

...
<method name ="id" return="const Id &"/>
<method name ="valid" return="bool"/>
<method name ="p" return="void"/>
<method name ="v" return="void"/>

</ interface >
...

</ member>
<member name="Condition" type ="inclusive"

cost ="10">
<interface >

...
<method name ="id" return="const Id &"/>
<method name ="valid" return="bool"/>
<method name ="wait" return="void"/>
<method name ="signal" return="void"/>
<method name ="broadcast" return="void

"/>
</ interface >
...

</ member>
</ family >

One could easily see that theSemaphore member was
the one choosen, since it is the only one that implement the
p() andv() methods that were used by the application3.

Similarly, the selection of the member of theThread

family member would be made based on the XML descrip-
tion, whose partly listing is:

<family name ="Thread" type ="abstraction"
class="incremental">

<interface >
...
<method name ="id" return="const Id &"/>
<method name ="valid" return="bool"/>
<method name ="state" return="volatile

const State &"/>
<method name ="priority" return="const

Priority &"/>
<method name ="priority" return="void">

<parameter type ="const Priority &" name
="priority"/>

</ method >
<method name ="join" return="int"/>
<method name ="pass" return="void"/>

3 The constructors required by the application would also be analysed
by theconfigurator , but since in this case they would be irrele-
vant for the selection, we have ommited them.

<method name ="suspend" return="void"/>
<method name ="resume" return="void"/>
<method name ="yield" return="int"

qualifiers="class"/>
<method name ="exit" return="void"

qualifiers="class">
<parameter type ="int" name="status"

default="0"/>
</ method >

</ interface >
<common>...</ common>
<member name="Exclusive_Thread" type ="

exclusive" cost ="1">
<interface >

...
<method name ="id" return="const Id &"/>
<method name ="valid" return="bool"/>
<method name ="exit" return="void"

qualifiers="class">
<parameter type ="int" name="status"

default="0"/>
</ method >

</ interface >
...

</ member>
<member name="Cooperative_Thread" type ="

exclusive" cost ="10">
<super name="Exclusive_Thread"/>
<interface >

...
<method name ="pass" return="void"/>

</ interface >
...

</ member>
<member name="Concurrent_Thread" type ="

exclusive" cost ="15">
<super name="Cooperative_Thread"/>
<interface >

...
<method name ="state" return="volatile

const State &"/>
<method name ="join" return="int"/>
<method name ="suspend" return="void"/>
<method name ="resume" return="void"/>
<method name ="yield" return="int"

qualifiers="class"/>
</ interface >
...

</ member>
<member name="Priority_Thread" type ="

exclusive" cost ="20">
<super name="Concurrent_Thread"/>
<interface >

...
<method name ="priority" return="const

Priority &"/>
<method name ="priority" return="void">

<parameter type ="const Priority &"



name="priority"/>
</ method >

</ interface >
...

</ member>
</ family >

Note that this is an incremental family, and, as so, ev-
ery member is a specialization of the previous. Hence, any
one of the members supports the elements declared in its
own interface, as well as the elements inherited from its par-
ents. Because of this, there are two members of the fam-
ily that would satisfy the requisits of the application:
Concurrent_Thread and Priority_Thread . In this
case, theconfigurator would select the one with the
lowest cost estimation, that is, theConcurrent_Thread 4.

After this first iteration, theconfigurator would
check the dependency information for the selected families
and members and, if necessary, include any other required
family. In this case, both families members’ implementa-
tions depends on theCPUfamily, and so it would be also in-
cluded in the configuration and the member specific to the
target machine processor (informed by the user) would be
selected (promoving portability). A new iteration would be
started to check the dependencies for the newly included
families, an so on, until no new family need to be included.

6. Limitations

The mechanism (configuration keys) used to bind the in-
flated interfaces to the real implementation of one of their
members only allows the connection of each inflated inter-
face with just one member at a time.

If the above example was extended to use another kind
of synchronization in conjunction with the semaphores al-
ready used, theconfigurator would correctly identify
that two or more members would have to be selected to sat-
isfy the requirements. However, that would be impossible
to accomplish, since it would only be posible to bind one of
them with the inflated interface of theSynchronizer fam-
ily at a time.

The only posible solution for this situation at this mo-
ment is to ask the application programmer to write the calls
to the synchronizers directly over the members’ interfaces,
instead of using the generic family’s interface, thus forc-
ing the programmer to explicit show his decisions about
what kind of synchronizer he is using. If he does so, the
configurator would understand that both members are
necessary and their implementations would be included in
the system’s configuration without the necessity for any
binding to the inflated interface.

4 The constructors required by the application would also be analysed
by theconfigurator , but since in this case they would be irrele-
vant for the selection, we have ommited them.

7. Supporting Tools

At the present, we have prototype implementations of
theanalyzer for applications written in C++ and JAVA .
These tools are able to parse an input program and produce
a list of the system abstraction interfaces (inflated or not)
used by the program, identifying which methods have been
invoked and, in the case of JAVA , in which scope they have
been invoked.

This information serves as input for the
configurator , which is currently being devel-
oped. Theconfigurator is indeed implemented by
two tools. The first one is responsible for executing the al-
gorithm that will select which members of each family
will be included in the customized version of the sys-
tem. This algorithm consists in reading the requirements
found by theanalyzer and compare them with the in-
terfaces of each member of the family as specified in the
repository. Every time a new member is selected, its depen-
dencies are recursively verified, including in the configura-
tion any members from other families that are needed to sat-
isfy them. The second part of theconfigurator is a
graphical tool that allows the user to browse an automati-
cally generated configuration, making manual adjustments,
if needed. Moreover, the user will have to enter some im-
portant information not discovered automatically: the con-
figuration of the target machine (architecture, processor,
memory, etc.) and the values of the traits of each compo-
nent.

At last, the configuration keys outputted by the
configurator are used by thegenerator , which
is implemented as a wrapper for theGNU Compiler Col-
lection, to compile the system and generate a boottable
image.

8. Further work

We are finishing the implementation of the
configurator that will be capable of automati-
cally generating the configuration for a customized ver-
sion of EPOS. Further works could refine the specifica-
tion and implementation of the system configuration model
in two aspects:

• Inclusion of behavioral specification in the component
description model. This specification would cover de-
pendencies like: some method of a component can
only be invoked if the component is in determinate
state. This kind of specification would have to be vali-
dated by some sort of formal mechanism, like a Prolog
inference engine or a Petri network.

• Evolution of the mechanism used to select members
by performance. Today, this task is accomplished us-
ing the specification by the programmer of a cost es-



timate of each member on each family if the form of
overhead. More elaborated mechanisms would include
an automated way to measure real performance of each
member during execution time.

9. Conclusion

In this article we have presented an alternative to achieve
automatic run-time system generation taking as base a col-
lection of software components developed according with
the Application-Oriented System Design methodology. The
proposed alternative consists of a novel component descrip-
tion language and a set of configuration tools that are able
to automatically select and configure components to assem-
bly an application-oriented run-time support system.

The described configuration tools are in the final phase
of development and allow the exposition of the system li-
braries to application programmers through a repository of
reusable components described by their inflated interfaces,
which are automatically bound to a specific realization at
compile time. This is possible due to the component spec-
ification model that contains all the information needed to
generate valid and optimized configurations for each appli-
cation.

We have shown an example of the configuration process
for a simple but real application, and the limitations of the
model regarding the selection of more than one different re-
alization for a component at the sime time.

This architecture makes possible the creation of opti-
mized versions of the operating system for the target appli-
cations, assuring that the performance levels and resource
usage optimization for embedded and parallel aplications
will be certainly better that those achieved with general-
purpose operating systems.

References

[1] Thomas Anderson. The Case for Application-Specific Op-
erating Systems. InProceedings of the Third Workshop on
Workstation Operating Systems, pages 92–94, Key Biscayne,
U.S.A., April 1992.

[2] Lothar Baum. Towards Generating Customized Run-time
Platforms from Generic Components. InProceedings of the
11th Conference on Advanced Systems Engineering, Heidel-
berg, Germany, June 1999.

[3] Danilo Beuche, A. Guerrouat, H. Papajewski, Wolfgang
Schröder-Preikschat, Olaf Spinczyk, and Ute Spinczyk. The
PURE Family of Object-Oriented Operating Systems for
Deeply Embedded Systems. InProceedings of the 2nd
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, St Malo, France, May 1999.

[4] Grady Booch. Object-Oriented Analysis and Design with
Applications. Addison-Wesley, 2 edition, 1994.

[5] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Al-
bert Lin, and Olin Shivers. The Flux OSKit: A Substrate for
Kernel and Language Research. InProceedings of the 16th
ACM Symposium on Operating Systems Principles, pages
38–51, St. Malo, France, October 1997.

[6] Antônio Augusto Fröhlich. Application-Oriented Operat-
ing Systems. Number 17 in GMD Research Series. GMD
- Forschungszentrum Informationstechnik, Sankt Augustin,
August 2001.

[7] Antônio Augusto Fröhlich and Wolfgang Schröder-
Preikschat. High Performance Application-oriented Oper-
ating Systems – the EPOS Aproach. InProceedings of the
11th Symposium on Computer Architecture and High Per-
formance Computing, pages 3–9, Natal, Brazil, September
1999.

[8] Antônio Augusto Fröhlich and Wolfgang Schröder-
Preikschat. Scenario Adapters: Efficiently Adapting Com-
ponents. InProceedings of the 4th World Multiconfer-
ence on Systemics, Cybernetics and Informatics, Orlando,
U.S.A., July 2000.

[9] Antônio Augusto Fröhlich, Gilles Pokam Tientcheu, and
Wolfgang Schröder-Preikschat. EPOS and Myrinet: Effec-
tive Communication Support for Parallel Applications Run-
ning on Clusters of Commodity Workstations. InProceed-
ings of 8th International Conference on High Performance
Computing and Networking, pages 417–426, Amsterdam,
The Netherlands, May 2000.

[10] A. Nico Habermann, Lawrence Flon, and Lee W. Cooprider.
Modularization and Hierarchy in a Family of Operating Sys-
tems.Communications of the ACM, 19(5):266–272, 1976.

[11] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. InProceed-
ings of the European Conference on Object-oriented Pro-
gramming’97, volume 1241 ofLecture Notes in Computer
Science, pages 220–242, Jyväskylä, Finland, June 1997.
Springer.

[12] Leonid Mikhajlov and Emil Sekerinski. A Study of the Frag-
ile Base Class Problem. InProceedings of the 12th European
Conference on Object-Oriented Programming, volume 1445
of Lecture Notes in Computer Science, pages 355–382, Brus-
sels, Belgium, July 1998. Springer.

[13] David Lorge Parnas. On the Design and Development of Pro-
gram Families.IEEE Transactions on Software Engineering,
SE-2(1):1–9, March 1976.

[14] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and
Eric Eide. Knit: Component Composition for Systems Soft-
ware. In Proceedings of the Fourth Symposium on Oper-
ating Systems Design and Implementation, pages 347–360,
San Diego, U.S.A., October 2000.

[15] Friedrich Schön, Wolfgang Schröder-Preikschat, Olaf
Spinczyk, and Ute Spinczyk. Design Rationale of the PURE
Object-Oriented Embedded Operating System. InProceed-
ings of the International IFIP WG 10.3/WG 10.5 Workshop
on Distributed and Parallel Embedded Systems, Pader-
born, Germany, October 1998.

[16] World Wide Web Consortium.XML 1.0 Recommendation,
online edition, February 1998. [http://www.w3c.org].


